Modeling and Experimental Study of Rotary Kilns Equipped with Lifters

Alex BONGO NJENG

Dimensional Analysis

le cnam

08-03-16

INTRODUCTION

Research Work

RAPSODEE Centre

CMGPCE Laboratory

CNAM - LGP2ES 2 m in length

Mines Albi - Centre RAPSODEE 4 m in length

EXPERIMENTAL SETUPS

Research Methodology

DIMENSIONAL ANALYSIS: SUMMARY

- Modeling of the flow characteristics of solids materials within continuously fed rotary kilns equipped with lifters:
 - Mean Residence Time,
 - Hold-Up,
 - Axial Dispersion Coefficient,
- Modeling of the heat transfer mechanisms in continuously fed rotary kilns equipped with lifters:
 - Convective heat transfer Coefficient (wall-to-gas),
 - Wall-to-solid Heat Transfer Coefficient.

HYDRODYNAMIC CHARACTERISTICS

KEY FACTORS

Main factors to be taken in consideration:

- Kiln design: L, Di
- Kiln operating conditions:
 N, M, S, D_{ex}, S_{lift}

$$D_{ex} = D_i - 2h_{exit}$$
$$S_{lift} = \frac{\pi D_i^2}{4} - \frac{n_{lift} - 1}{2}S_{horlift}$$

12 variables

- Solid characteristics: $\rho_{\text{bulk}}, \rho_{\text{tapped}}, \theta$
- Physical property: g

BUCKINGHAM'S II THEOREM

If there is a physically meaningful equation: $F(N, \dot{M}, S, D_{ex}, S_{lift}, L, D_i, \rho_{bulk}, \rho_{tapped}, \theta, g) \cdot \bar{t} = 1$ involving a certain number r=12 physical variables, then the original equation can be rewritten in terms of a set of p=r-n=12-4=8 dimensionless parameters.

p: number of dimensionless grouping to definer: number of variablesn: number of fundamental units among the variable

DIMENSIONLESS GROUPING (ρ_{bulk}, g, L, S)

۲	Dynamic ratio between inertial and gravitational forces:	$\frac{N^2 D_i}{g} \qquad \frac{\dot{M}}{\rho_{bulk} D_i^2 \sqrt{gL}}$
۲	Solids characteristics:	$\frac{\rho_{bulk}}{\rho_{tapped}} \qquad \frac{\theta}{S}$
۲	Geometric ratio:	$\frac{L}{D_i} \frac{4S_{lift}}{\pi D_i^2} \frac{D_{ex}}{D_i}$
۲	Solids transport coefficients:	$\frac{\bar{t}}{\sqrt{gL}} \frac{HU[\%]}{\frac{\rho_{bulk}L\pi D_i^2}{4}} \frac{D}{\sqrt{D_i^2 gL}}$
1RT:	$\frac{\bar{t}}{\sqrt{gL}} = F\left[\left(\frac{N^2D_i}{g}\right), \left(\frac{D_{ex}}{D_i}\right), \left(\frac{\theta}{S}\right), \left(\frac{\theta}{\rho}\right)\right]$	$\frac{\dot{M}}{bulk D_i^2 \sqrt{gL}}\right), \left(\frac{4S_{lift}}{\pi D_i^2}\right), \left(\frac{\rho_{bulk}}{\rho_{tapped}}\right), \left(\frac{L}{D_i}\right)$

CORRELATIONS

$$\bar{t} = k\sqrt{gL} \left(\frac{N^2 D_i}{g}\right)^{\alpha} \left(\frac{D_{ex}}{D_i}\right)^{\beta} \left(\frac{\theta}{S}\right)^{\gamma} \left(\frac{\dot{M}}{\rho_{bulk} D_i^2 \sqrt{gL}}\right)^{\delta} \left(\frac{4S_{lift}}{\pi D_i^2}\right)^{\epsilon} \left(\frac{\rho_{bulk}}{\rho_{tapped}}\right)^{\zeta} \left(\frac{L}{D_i}\right)^{\eta}$$

$$HU[\%] = k\frac{\rho_{bulk} L\pi D_i^2}{4} \left(\frac{N^2 D_i}{g}\right)^{\alpha} \left(\frac{D_{ex}}{D_i}\right)^{\beta} \left(\frac{\theta}{S}\right)^{\gamma} \left(\frac{\dot{M}}{\rho_{bulk} D_i^2 \sqrt{gL}}\right)^{\delta} \left(\frac{4S_{lift}}{\pi D_i^2}\right)^{\epsilon} \left(\frac{\rho_{bulk}}{\rho_{tapped}}\right)^{\zeta} \left(\frac{L}{D_i}\right)^{\eta}$$

$$D = k\sqrt{D_i^2 gL} \left(\frac{N^2 D_i}{g}\right)^{\alpha} \left(\frac{d_p}{D_i}\right)^{\beta} (S)^{\gamma} \left(\frac{\dot{M}}{\rho_{bulk} D_i^2 \sqrt{gL}}\right)^{\delta} \left(\frac{4S_{lift}}{\pi D_i^2}\right)^{\epsilon} \left(\frac{\rho_{bulk}}{\rho_{tapped}}\right)^{\zeta} \left(\frac{L}{D_i}\right)^{\eta}$$

	k	α	β	Y	δ	E	ζ	η []
MRT	0,0026	-0.4422	-0.3597	0.9276	-0.1130	-8.8835	2.4641	1.1
HU	45.65	-0.4439	-0.3987	0.7780	0.9584	-3.8197	16763	0
D	-8.92 10-4	0.3033	-0.1362	0.6477	-1.2280	-13809	-4.7868	0

EXPERIMENTAL VARIABLES & MATERIALS

Parameters	Notation	Order of magnitude	Unit		Materials	Bulk density [kg.m ⁻³]	Tapped density [kg.m ⁻³]	Size [mm]	Repose Angle [°]
Kiln length	L	1,95-4	m		Sand	1422	1543	0,55	39
Kiln diameter	D	0.1-0.2	m						
Rotation speed	N	1-12	rpm	Rice		889	934	3.8*1.9	36
Kiln slope	S	I-5	degree		NaCl	1087	84	0,6	35,4
Mass flow rate	Μ	0.6-7.5	kg/h		Dyed	889	934	3 8*1 9	36
Exit dam height	h	0-33.5	mm		rice			5.0 1.7	
Lifters	SL, RL, NL	- 3SL, 6SL	_		Beech chips	260	284	10*4.5 *2	42

MEAN RESIDENCE TIME

Good agreement within the ±20% margins

FILLING DEGREE

Good agreement within the ±20% margins

AXIAL DISPERSION COEFFICIENT

Good agreement except in cases of slipping motion

HEAT TRANSFER MECHANISMS

KEY FACTORS

Convective heat transfer:

- Kiln design: D
- Kiln operating conditions:
 ω, lg, T
- Solid characteristics:
 ρ_g, μ_g, c_{pg}, k_g

Wall-to-solid heat transfer:

- Kiln design: D
- Kiln operating conditions:
 ω, Ι_ψ, Τ, HU
- Solid characteristics:
 ρ_b, c_{pg}, k_b

BUCKINGHAM'S II THEOREM

If there is a physically meaningful equation: $F(c_{pg}, \rho_g, \mu_g, k_g, \omega, D, l_g, T_g) \cdot h_{ew-g} = 1$ $F(c_{pb}, \rho_b, [HU]\%, k_b, \omega, D, l_{\psi}, T_w) \cdot h_{cw-cb} = 1$ involving a certain number r=9 **variables**, then the original equation can be rewritten in terms of a set of p=r-n=9-4=5 dimensionless parameters.

p: number of dimensionless grouping to definer: number of variablesn: number of fundamental units among the variable

CORRELATIONS

$$Nu_{ew-g} = \frac{h_{ew-g}D}{k_g} = KRe_{\omega}^{\alpha}Pr^{\beta} \left(\frac{l_g}{D}\right)^{\gamma} \left(10^{-10}\frac{c_{pg}\rho_g T_g^{\infty}}{\omega\mu_g}\right)^{\delta}$$

$$Re_{\omega} = \frac{\omega\rho D^2}{\mu_g} Pr = \frac{c_{pg}\mu_g}{k_g}$$

$$h_{\omega} = \frac{l_{\omega}}{\mu_g} \left(10^{-10}\frac{c_{pg}\rho_g T_g^{\infty}}{\omega\mu_g}\right)^{\delta} = \frac{l_{\omega}}{\mu_g} \left(10^{-10}\frac{c_{pg}\rho_g T_g^{\infty}}{\omega\mu_g}\right)^{\delta}$$

$$Nu_{cw-cb} = \frac{h_{cw-cb}l_{\psi}}{k_b} = K\left(10^{-3}\frac{\omega D^2}{a_b}\right)^{\alpha} \left(10\frac{l_{\psi}}{D}\right)^{\beta} \left(10^{-2}[HU]\%\right)^{\gamma} \left(10^{-4}\frac{T_w k_b^{0.4} c_{pb}^{0.6}}{\rho_b^{0.4} D^{2.8}}\right)$$

	Κ	α	β	Y	δ
Nu _{ew-g}	0.1085	0.0275	-0.4839	-1.9284	-0.2208
Nu _{cw-cb}	2.1371	0.4531	-0.3507	0.9693	1.4177

MATERIALS AND METHODS

- I. Set the variable parameters to desired value, and achieve steady state (of the bulk flow)
- Start the logging of temperatures (wall, gas and solids) ~30 min before starting heating the bulk bed)
- 3. Collect the power supply, the ambient temperature and freeboard gas temperatures at the inlet end, every 30 min.

- 4. Set the desired temperature at wall and turn on the heating in zone 2 or in the two zones (1 and 2)
- 5. Achieve steady state of wall, gas and solids temperature
- 6. Collect and weigh the solids hold up

300 °C	Materials	Bulk density [kg.m ⁻³]	Sp. heat cap. [J.kg ⁻¹ .K ⁻¹]	Therm. conduc. [W.m ⁻¹ .K ⁻¹]	Therm. diffus. [m².s-¹]	Emissivity ^[1] [-]
Bulk	Sand	1422	835	0,1786	0.01 10 ⁻⁵	0,76
Gas	Air	1,177	1005	0,0262	2.21 10-5	0.0 (esttimated)
Wall	Inconel 800	7950	427	14,660	0.43 10-5	0.85 (esttimated)

[1] Thammavong, P., Debacq, M., Vitu, S., Dupoizat, M., 2011. Experimental Apparatus for Studying Heat Transfer in Externally Heated Rotary Kilns. Chemical Engineering & Technology 34, 707–717.

EXPERIMENTAL VARIABLES

Parameters	Notation	Order of magnitude	Unit
Kiln length		1,95	m
Kiln diameter	D	0, 101	m
Rotation	\square	2-12	rpm
Kiln slope	S	3	degree
Mass flow	M	0.7-2.6	kg/h
Exit dam	h	23.5-33.5	mm
Lifters	SL, RL, NL	_	_
Temperature	Tw	100-500	°C

Convective Heat Transfert

Good agreement within the ±20% margins

AXIAL DISPERSION COEFFICIENT

Good agreement within the ±20% margins

CONCLUSIONS

CONCLUSION - HYDRODYNAMIC

- Residence Time Distribution (RTD): Stabout 170
 experiments used for the model validation
- Mean Residence Time
 Modeling Successfully
 represents the Exp. MRT of
 this study and other works

- Hold-up / Filling degree correlation show good agreement with experimental data
- Axial Dispersion Model successfully represents the Exp. RTD within rolling motion

CONCLUSION - HEAT TRANSFER

- Analysis of the temperature profiles following a heating operation: 90 experiments
- Experimental determination of the heat transfer coefficient between wall and solid particles:
 - Lumped system formulation
 Methods
 - Global heat balance using supply power measurements

- Convective heat transfer model in good agreement with experimental data but need a few other data for consolidation
- Wall-to-solid heat transfer model successfully represents the experimental data
- Some difficulties encountered to take into account effect of the temperature and proceed the calculations in the mean time

VALUATION OF THE RESULTS

VALUATION OF THE RESULTS

6 months

18 months

Effect offiliter stand and longen the path path tess and the flow officials in a Evaluation of the Walf of ender interact onside and the path of the trotations in some pilpitototatany. Ikilbaband Budapenne statabold Dapad axist anspestision cst tidye modeling

THANK YOU FOR YOUR ATTENTION