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Importance of thermophysical properties 

 

Availability of accurate thermophysical properties is 

important for: 

 Design and construction of new process plant equipments 

 Implementation of “more rigorous and sophisticated 

design procedures” in software packages (Raal and 

Mühlbauer, 1984) 
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Introduction 

 

 Thermophysical properties may be divided into two 

groups: 

 Thermodynamic properties 

 Transport properties 

 For each experimental measurement, there is: 

 An experimental setup 

 An experimental procedure 

 For each data measured, we get: 

 A numerical value 

 A unit 

 Its uncertainty 

 Validation of data and/or data treatment 
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Properties 

 

 What can we measure? 

 Temperature 

 Pressure 

 Composition 

 Volume (variation of volume) or density 

 Speed of sound 

 Flow 

 Luminosity 

 Hardness 

 Etc 

 

 Aim: disturb the system as little as possible while being 

accurate and reliable 

 Research on techniques and experimental procedures 

 Size of the equilibrium cell 

 Development of sensors  
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Thermophysical properties 

THERMODYNAMIC 
PROPERTIES 

Phase Equilibria Volumetric 
Properties 

Calorimetric 
Properties 

 VLE/VLLE/LLE 
 SLE 
 Hydrates 
 Critical Points 
 Activity 
Coefficients 

 Enthalpies of 
solution 
 Heat 
capacities 

 Densities 
 Compressibilities 
 Excess volumes 
 Speeds of sound 

 

TRANSPORT 
PROPERTIES 

THERMOPHYSICAL  
PROPERTIES 

 
 Viscosities 
 Diffusivities 
 IFT 
 Thermal 
conductivities 
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Which experimental method? 

 

The choice of the adequate experimental method 

depends on: 

 The thermophysical property (PTx, density, acivity 

coefficient…) 

 The type of fluid (molar mass, toxicity, stability within 

temperature…) 

 Temperature(s) and pressure(s) of interest 
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Thermodynamic properties  

and 

 Experimental methods 



Experimental methods 
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Closed Circuit methods 

Synthetic Analytic  

Open circuit methods 

Experimental methods 

Isothermal  Isochoric 
Static 
stirred 

Static 
cirulated 

Forced 
circulation 

of one 
compound 

of the 
mixture 

Forced 
circulation 

of the 
mixture 

Density Bubble point Hydrate VLE/VLLE/LLE Enthalpy 



VLE/VLLE/LLE 

 

 Static analytic method 

 Vapour and/or liquid sampling (ROLSI™) 

 Gas chromatography 

 Data obtained: composition of each phase 
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VLE Equipment 

Up to 40 MPa / [300 – 470] K 



Determination of hydrate dissociation point 
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 Isochoric step heating method 

 Calculation of hydrate dissociation 

point 

 

 

Equipment for hydrate dissociation points measurements  

Up to 70 MPa / [200 – 320] K 



Densimeter  

 

 Indirect synthetic method 

 Vibrating tube densimeter: 

 Relation between the vibrating period 

of a dimensional resonator and its 

vibrating mass 
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Vibrating tube densimeter 

Up to 70 MPa / [250 – 390] K 



Calorimeter 

 

 Open circuit method 

 T and P are constant 

 Experimental procedure: 

 T fixed 

 Fluids are loaded into the pumps 

 Fluids are pressurized 

 Circulation at different flow rates (xi ∈ [0 ; 1]) 
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Calorimeter 



Transport properties  

and 

 Experimental methods 



Viscosity 
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 Capillary tube viscosity measurement method 

 Consistency of measurements ensured with 

specific experimental procedure: 

 At each pressure, viscosities determined at 

different flow rates 

 Laminar flow conditions ensured: check 

Reynolds number 

 Pumping the sample fluid through capillary tube 

by the piston pump results in dynamic 

differential pressure (monitored and recorded) 

 Poiseuille equation can relate the pressure drop 

across the capillary tube to the viscosity 

  2300
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Interfacial tension (IFT) 

 

 Different methods: 
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Source: 
Drelich et al., 
Encyclopedia 

of Surface 
and Colloid 

Science, 
2002 



Uncertainties 
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Definition 

 

 Uncertainty: 

 « Quantitative indication of the quality of a result » 

 « Doubt that one has on a result. It corresponds to a dispersion that 

can be reasonably attributed to the measurement process » 

 

 Estimation: 

 Based on NIST procedure 

 Type A: calculation based on statistical analysis of a set of observations  

 Type B: evaluation by other means:  

 Ex: distribution law 

 Calibration 
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Calibration 

 

 Calibration:  

 process of finding a relationship between the physical property and the 

output signal 

 Required: 

 New instrument 

 After an insturment has been repaired or modified 

 Before and/or after measurement 

 After an event (shock, sudden shutdown, etc) 

 Calibration and errors: 
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errorsmeasure) standardmeasure(process 
 Material 
 Equipment 
 Method 
 Operator 
 Environment 



Two types of uncertainties 

 

 Uncertainty related to repeatability: type A 

 Ex: 

 

 Type B and distribution laws 

 The uncertainty is supposed to be ±a 

 Different distribution laws: 

 Normal distribution  

 Uniform distribution  

 Arcsine distribution 
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Different sources of uncertainties 

Exemple: VLE / LLE 

Repeatability  Calibration  

u(P) urep(P) 
uref(P) 

 
ucorr(P) 

 

u(T) 
 

urep(T) 
 

uref(T) 
 

ucorr(T) 
 

u(xi) 
 

urep(xi) 
 

uinj(nj) 
 

ucorr(nj) 
 

urep(Sj) 
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Standard 
deviation 

Polynomial 
correlation to 

convert the « read » 
value to the 

« measured » value 

Standard 
deviation 

Polynomial 
correlation 

Calibration of the GC: 
• a fixed volume of pure compound is injected 
several times 
• N volumes are injected leading to N different 
surfaces 
• polynomial correlation between volume and 
surfaces 
• polynomial correlation between the number of 
moles and surfaces 

Standard 
deviation 

Polynomial 
correlation 

Repeatability of 
surfaces at fixed 

volume 



Example 

 

 Molar fraction  

  

   

22 

       
2

2

2

21

1

1

2

2

21

1

1

2

rep1
nu

nn

x
nu

nn

x1
xuxu 

























Type A 

       
1

2

rep

2

1

1

1

2

corr1

2

inj1
Su

S

n
nununu 














2

121101
SaSaan  




kN

1l

l,k,1

k

k,1
S

N

1
S

Type B 

 
3

SE
Su 1max

1rep


gas liquid 

RT

PV
n 1

1
 111

Vn 

idem 

Calculation of the 

covariance matrix 



Expanded uncertainty 

 

 Expanded uncertainty: 

 

    

 

 

 K=2 defines an interval having a level of confidence of ≈ 95% 

 K=3 defines an interval having a level of confidence of ≈ 99% 

23 

       PuPuPuKPU 2

corr

2

ref

2

rep


Coverage factor 



Validation of data / Data Treatment 
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Equations of state 

 

 Equations of state 

 Data validation 

 Pure compounds & mixtures 

 

 Examples:  

 Van der Waals type 

 VPT, SRK, PR 

 

 

 

 Alpha function: Mathias Copeman, Twu et al, etc… 

 

 

 SAFT type: associating fluids 
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Pure compounds 



Vapor pressure (1/2) 

Data validation: correlations  

 Antoine equation: 

 

 Frost Kalkwarf: 

 

 Wagner: 

 

 Cox:  

 

 DIPPR (Pa):    
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Vapor pressure (2/2) 

Example: n-hexane 
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Density (1/2) 

 

 Liquid density  

 At atm. pressure: DIPPR [kmol.m-3]  

 

 

 

 

 

 Isothermal data 

  Compression factor 

 

 

 Virial equation (only for vapor phase)  
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Density (2/2) 

Example: n-hexane (liquid state) 
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Enthalpy of vaporization (1/2) 

 

 The Clapeyron equation 

 

 

 DIPPR  

 

 

 Watson (n=0.375) 
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Enthalpy of vaporization (2/2) 

Example: n-hexane 
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Mixtures 



Vapor – Liquid Equilibria 

 

 Graphic treatment: relative volatility 

 

 

 

 Example: Ethane – C4F10 
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Thermodynamic consistency testing (1/2) 

 

 Gibbs-Duhem equation 

 

 

 

 At equilibrium: 

 Isothermal – isobaric form 

 Entire composition range 

 In low-pressure VLE 
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Excess properties (1/2) 

 

 Usually:  

Redlich – Kister polynomial correlation 

 

 

 

 Problem: number of parameters 
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Excess properties (2/2) 

 

 Desnoyers and Perron (1997) 
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Example: furan – n-hexane 
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Conclusion 



Conclusion 

 

 Experimental measurements: 

 One method can be used to measure different properties 

 Different methods can be used to measure one property 

 Uncertainties: 

 Very important to calculate 

 However, difficult to estimate all factors 

 Data validation / treatment 

 Depends on model selection 
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Experimental techniques for Phase Equilibria measurements at high pressures (Dohrn et al. 2010) 



Thank you for your attention 
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