SFGP – GT Thermodynamique , April 1, 2016

Production de données thermodynamiques par simulation moléculaire : quelles incertitudes ?

Marianna Yiannourakou, Benoit Leblanc, Xavier Rozanska, Alexander Mavromaras, Philippe Ungerer

Materials Design SARL, Montrouge, France

Acknowledgements : partners of ANR-funded projects Memobiol (2009-2013) and Predimol (2010-2014)

- General coverage of chemicals by thermodynamic data is low
 - More than 60 million pure substances filed in Chemical Abstracts
 - 26 million possible organics built with 11 C, N, O, F (Fink & Reymond, JChInfModel, 2007)
 - 140,000 substances declared by the chemical industry to comply with EU regulation REACH
 - 43,911 compounds in Dortmund Databank (VLE, LLE, SLE, enthalpic, Cp, volumetric,...)
 - ~ 3,000 compounds well characterized in DIPPR database (34 correlated properties)
 - Low coverage of properties at extreme T and P or toxic, hazardous compounds
- Expectations of chemical engineers vs prediction methods
 - Consistent prediction of multiple properties (ex. Cp, enthalpy, Tb, Psat, ...)
 - Sound principles, well-defined reference states
 - Sound parametrization , efficient validation
 - Small influence of numerical parameters, averaging procedures,
 - Ability to consider multifunctional molecules and mixtures with a limited number of parameters
- Which thermodynamic properties can be obtained by simulation from their molecular structure :
 - Quantum chemistry (DFT, Semi-Empirical methods, COSMO, QSPR)
 - Forcefield-based methods (Monte Carlo, Molecular dynamics)
 - What uncertainties ?

1 MEDEA SOFTWARE ENVIRONMENT

Materials Design[®] - SFGP- GT Thermo-April 1st, 2016

MedeA's Three Tier Architecture

Molecular modeling applied to molecules

400-600 atoms IR vibrational analysis

Up to 20000 atoms nanoseconds

Kerogen fragment

Materials Design[®] - SFGP- GT Thermo-April 1st, 2016

Hydrogendimethylether

(periodic boundary conditions)

Property Calculation in MedeA® with Forcefield Methods

Molecular Dynamics (MedeA[®]-LAMMPS*) Forcefields: AA (pcff+, OPLS,..)

Static Properties \blacktriangleright Density

Pressure

Cohesive Energy Density

Transport Properties

Viscosity

Thermal Conductivity

Self-Diffusion Coefficient

Mechanical Properties

Shear Modulus

Young's Modulus

* Large Scale Atomic/Molecular Massively Parallel Simulator (R), Sandia Corporation (2003) Materials Design[®] - SFGP- GT Thermo-April 1st, 2016

Monte Carlo (MedeA[®]-GIBBS**) Forcefields: TraPPE, AUA, pcff+

Static Properties

Density

Pressure

Chemical Potential & Fugacity

Henry Solubility Constants

Boiling Point Temperature

Phase Equilibrium

Derivative Properties

(residual heat capacity, isobaric thermal expansivity, isothermal compressivity, Joule-Thomson coefficient)

Adsorption Isotherms

** Gibbs v. 9.3, IFP-Energies Nouvelles, Rueil-Malmaison & Laboratory of Physical Chemistry, University Paris Sud -CNRS, Orşay

Automation of the preparation, processing and analysis of simulation

- Editor of structures list
 - Import/export structures from
 - crystallographic databases
 - SMILES formula (Openbabel)
 - conformer search (Openbabel)
 - a flowchart itself
 - Periodic <u>and</u> aperiodic structures
- Flowchart module: Loop over all structures in the structure list
- Integrated in the flowchart environment
 - Edition of structures
 - translation of atoms
 - supercell building
 - amorphous phase building
 - random atomic substitution
 - atomistic simulation
 - Loops over set of simulation variables and parameters
- Flowchart module: edition of personalized Table printing

2 THERMOCHEMICAL PROPERTIES

Materials Design[®] - SFGP- GT Thermo-April 1st, 2016

Set of organic molecules

- 880 organic molecules SMILES formula are collected from DIPPR database
 - size C_1 to C_9 and covering 15 classes of organic compounds
 - subsets depending on availability of experimental data

MOLECULES CLASS	NUMBER OF MOLECULES	MOLECULES CLASS	NUMBER OF MOLECULES
Carboxylic Acids	39	Amines/Amides	127
Aldehydes	44	Halogenated	171
Alcohols	80	Esters	63
Polyols	38	Ethers	53
Alkanes	91	Ketones	41
Olefins	84	Peroxides	10
Alkylaromatics	14	Epoxides	16
lsocyanates	9	TOTAL	880

Rozanska et al., J. Chem Eng Data, 2014

Heats of formation of organic molecules

Selected reference = DIPPR exp. data with error estimated to be lower than 5% - set of 428 values

Source experimental data:DIADEM: The DIPPR Information and Data Evaluation Manager for the Design Institute for Physical Properties, Version 6.0.0, Database 2011

Ortho-, Meta-, and Para-Xylenes

- Molecules geometries are optimized with MOPAC(PM7)¹
- Frequency and thermochemistry calculations follow
- Experimental data of C_p° from Poling *et al.*²

²Poling, B.E., Prausnitz, J.M., O'Connell, J.P. in *"The properties of gases and liquids – 5th edition"*, McGraw-Hill, 2007.

Standard Gibbs free energy of formation of

Ideal heat capacity of organic molecules

Source experimental data:The properties of gases and liquids, fifth international ed.; Poling et al. ; McGraw-Hill, Boston, 2007, pp. A.35-A.46. Thermodynamics Research Center (TRC) data bank, College Station, TX, USA ; NIST ; IUPAC

 $Materials \, Design ^{\circledast} \text{-} SFGP\text{-} GT \, Thermo\text{-} April \, 1st, 2016$

Heat capacity of liquid alkanes

- Total heat capacity is obtained with an uncertainty of 3 to 5% as the sum of :
 - Ideal heat capacity from vibrational analysis, using MedeA-MOPAC
 - Residual heat capacity from MedeA-GIBBS using forcefields (derivative property obtained from fluctuations, see *Lagache et al., PCCP, 2001*)

Inorganic molecules?

• Ideal gas heat capacity at *T*=298 K: RMSD of the average relative difference between PM7 and BP86/TZVP

		Al_2O $AlBr_3$ $AlCl_3$ A							lF_3	AlO	Al	S			
		Al ₂ Se AlCl AlF A							ll	AlOCl AlSe					
		AlBr AlCl AlF							lI.	Alor	F (A	$l_{2}O)_{2}$			
Li	Be	Li						B	C	Ν					
(9)	(8)		(9) Element						(19)	(28)	(13)	0			
22	2	5 Number of mole							17	10	7				
Na	Mg										Al	Si	Р	S	
(10)	(4)									(18)	(22)	(18)	(23)		
14	13		• RMSD (%)							17	13	12	10		
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se
(9)	(5)	(4)	(15)	(5)	(7)	(4)	(10)	(4)	(11)	(10)	(6)	(14)	(18)	(10)	(14)
11	14	9	19	10	12	32	5	22	12	19	6	13	10	10	7
Rb	Sr	Y	Zr	Nb	Mo		Ru			Ag	Cd	In	Sn	Sb	Те
(4)	(5)	(3)	(17)	(5)	(22)	Tc	(3)	Rh	Pd	(2)	(7)	(16)	(13)	(9)	(9)
11	10	12	2	12	11		6			7	10	8	10	11	15
Cs	Ba		Hf	Та	W					Au	Hg	Tl	Pb	Bi	
(9)	(4)	La	(3)	(11)	(17)	Re	Os	Ir	Pt	(2)	(8)	(6)	(13)	(9)	Po
15	19		13	10	15					1	7	5	13	11	

Source for the 515 inorganic molecules: Knacke et al. *Thermochemical properties of inorganic substances*, Springer-Verlag, Berlin, 1991

Liquid density of organic compounds from molecular dynamics

- liquid density at 1 bar and 298 K for 174 compounds
- LAMMPS , pcff+ forcefield

Rozanska et al., JCED, 2014 (Experimental data: DIPPR Database 2011)

Materials Design[®] - SFGP- GT Thermo-April 1st, 2016

3 VAPOR-LIQUID EQUILIBRIA

Yiannourakou et al., Molecular Simulation, 2013 Rozanska et al., J.Chem. Eng. Data 2014

Materials Design[®] - SFGP- GT Thermo-April 1st, 2016

Open symbols : TraPPE Filled symbols : AUA LINES : DIPPR

Propane

n-Butane

Iso-Butane

n-Pentane

Iso-Pentane

Neo-Pentane

n-Hexane

n-Heptane

n-Octane

n-Nonane

n-Decane

0%

1%

AUA TraPPE-UA

Tb

2% 3%

AAD (%)

4%

5%

Olefins

	AAD on Tb, %	AAD on liq density all T <tc< th=""></tc<>
TraPPE C2-C8	3.5 %	0.56 %
AUA C2- C18	0.81%	0.91 %

Cyclic and aromatic compounds

Open symbols : TraPPE Filled symbols : AUA **LINES : DIPPR**

Benzene

Toluene

Anisole

THF

0%

Naphthalene

Tetrahydropyrane

Cyclohexane

Materials Design[®] - SFGP- GT Thermo-April 1st, 2016

Alkanols, diols, triols

	AAD on Tb, %	AAD on liq density T <tc< th=""></tc<>
GIBBS - TraPPE	1.4 %	1.4 %
GIBBS - AUA	1.4% (2.0% incl glycols)	1.9 %
PCFF+		2.0% (3.0% with sorbitol,glycerol)
COSMO	2.4 %	

Materials Design[®] - SFGP- GT Thermo-April 1st, 2016

1000/T (1000/K)

Acetone

Butanone

- 2-Pentanone

- 2-Hexanone

Acetaldehyde

- Propanal

- Butanal

— Pentanal

Heptanal

Octanal

0.4

QSAR

Why QSAR or QSPR ?

- Many properties cannot be computed from atomistic simulations (ex. Octane numbers of fuels, ecotoxicity, auto-ignition, kinetic rates in free radical mechanisms,....)
- Saves computing time when sampling is difficult (ex. Melting properties)
- Capitalize experimental data
- Simulation may generate useful descriptors (ex. Dipole moment, molecular size, saturation pressure, topology,...)

Current QSPR – QSAR in MedeA

- P3C module -> properties of polymer materials using topological indicators (Bicerano et al. Predition of polymer properties, 2002)
- Designer correlations :
 - Define training set and validation set of data
 - Determination of descriptors from QM, MD, MC,...
 - Regress correlation parameters using standard spreadsheeting tools

Possible improvements in QSAR-QSPR developments :

- 1° include several conformers and multifunctional compounds in training set,
- 2° select functional forms with theoretical basis for large size molecules
- 3° include statistical uncertainties on either experiments or simulation results when regressing parameters (maximum likelihood criterion) and when evaluating correlation

Organic molecules

• Heat of formation - DIPPR exp. data with error estimated to be lower than 5% - set of 428 values

Source experimental data:DIADEM: The DIPPR Information and Data Evaluation Manager for the Design Institute for Physical Properties, Version 6.0.0, Database 2011

Stability and efficiency

- MOPAC geometry optimiz. and vibrational analysis flowchart
- ~24 hours to compute the set of 5869 molecules from EPI suite (2 proc.)
 - unsuccessful for 7 molc. but solved 'manually' (optimizer)

- Total energy
- ΔH^{o}_{f}
- LUMO/HOMO energies
- IR/Raman frequencies
- $C_{pid}(T), S^{\circ}, H_{id}, \Delta G^{\circ}_{f}$
- COSMO volume and surface
- Dipole
- Charges

VLE OF MIXTURES

MedeA-GIBBS prediction of VLE/VLLE with gases

High pressure phase diagram of H2-dimethylether

MedeA-GIBBS AUA forcefield (ether) Darkrim forcefield (H2)

 H_2 in dimethylether - T = 316 K

VLE and VLLE with MEdeA-GIBBS

Transport properties (viscosity, diffusivity, heat conductivity) from forcefield-based methods

- Good viscosity predictions (5-20%) with All Atoms force fields using LAMMPS
- Good extrapolation capability in T and P
- Convergence with high viscosity liquids (>20 mPa.s) requires long computing times (days) and/or supercomputers, either with equilibrium or non-equilibrium molecular dynamics
- High throughput predictions appear feasible with similar approach as liquid density

Ungerer et al., Molec. Simulation, 2014

6 CONCLUSIONS

Conclusions

1. Achievements

- User-friendly structure building and initialization, automated forcefield assignment, flowcharts
- Automated post-processing, convergence control
- High throughput simulations Structure list editor (SMILES code, conformer search, import/export)
- Graphical flowcharts → user-friendly access to Quantum mechanics, Forcefield assignment, Molecular dynamics, Monte Carlo methods
- Web-based job server \rightarrow access to distant parallel computing resources
- Automation of the simulation preparation, submission, processing, and collection of data tested on set of up to ~6000 molecules up to 11 carbon atoms
- 2. Applications to molecular properties
 - Liquid density : good performance of MD with pcff+ forcefield (AAD ~ 2%) and TraPPE as well
 - VLE properties : good performance on Tb, Psat, ΔH_{vap} with MedeA-GIBBS
 - Thermochemical properties : good performance of Semi-empirical QM for organics (avg. abs deviation ~3% on C_{Pid} at 300-1000 K, ; 30 kJ mol⁻¹ on ΔH°_{f})
 - Transport properties : mature applications if relaxation times compatible with MD (
 - QSAR, QSPR : high productivity computation of descriptors for correlation development
- **3.** Remaining challenges :
 - Large molecular weights , large number of conformers
 - Transferable forcefields for phase equilibria
 - Volumetric properties, transport properties : High efficiency with MD, wider scope expected from further extensions of Forcefields
 - VLE properties, : High throughput possible with increasing automation of Monte Carlo methods and extension of forcefield parametrization.

