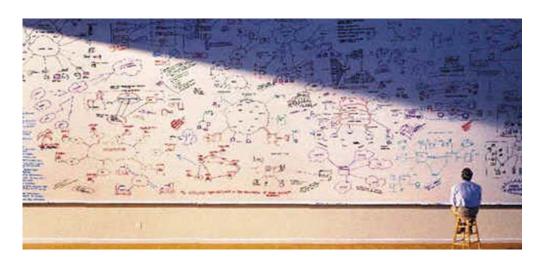

Les modèles thermodynamiques prédictifs face au défi des bioprocédés


Avant propos

Rigorous application of thermodynamics to bioprocesses may clearly be seen as a daunting task in view of the astronomical complexity of the reaction mixtures, giant biological molecules, intramolecular forces, multiple driving forces and the multitude of phases and biological, chemical and physical processes, which have to be dealt with. However, rational, efficient and rapid process development and equipment design can only be achieved on the basis of a sound scientific foundation, as it is available nowadays, e.g. for the petrochemical industries. The more extensive

Von Stockar & van der Wielen, 1997

The generality and versatility of thermodynamics allow application to all materials, no matter how complex. Those who seek new applications of thermodynamics need not exclude biomacromolecules; they too are subject to the laws of thermodynamics.

Dey & Prausnitz, 2011

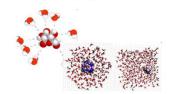
Ordre du jour

- A quoi sert un modèle prédictif?
- L'exemple du génie chimique / génie pétrolier
 - Des états correspondants aux équations d'état cubiques avec règles de mélange complexes ... et au-delà
- Les « nouvelles » approches thermodynamiques
 - Les équations SAFT et l'exemple de GC-PPC-SAFT
 - Les approches COSMO
 - Le modèle NRTL-SAC
- Quelques exemples d'application dans le domaine biotechnologies / bioprocédés
- Perspectives

A quoi sert un modèle prédictif?

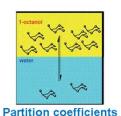
Qu'est-ce qu'un modèle thermodynamique prédictif?

Modèles prédictifs


- Modèle théorique sans ajustement ou ajusté sur un minimum de données et utilisable (en P, T, x ou sur un large spectre de molécules) audelà de la base d'ajustement (extrapolation)
- Un modèle empirique ajusté sur les données disponibles aura une applicabilité fortement limitée.
- Pour extrapoler, pour faire du criblage, pour faire une estimation ... on préférera des approches prédictives
- Si besoin de précision, on ajustera ...

Les modèles 100% prédictifs n'existent pas

 Plus bases théoriques sont fortes, moins on a besoin d'ajustement

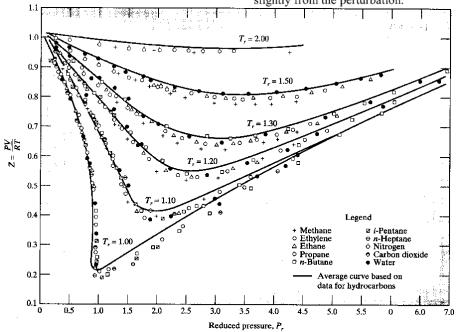

Phase equilibria (VLE, LLE, ...SLE)

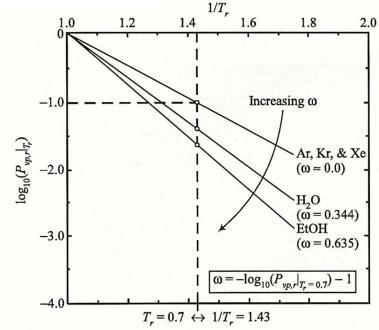
Solvation, hydration

Solubility

De quels <u>modèles</u> dispose-t-on pour <u>prédire</u> le comportement thermodynamique ?

© 2011 - IFP Energies nouv ee


L'exemple du génie chimique : les états correspondants


5. The complete expansion of Eq. (3.50) shows all the molecular parameters which may be needed for a reduced equation of state for fluids deviating from the simple corresponding-states principle. This equation is represented by:

$$T_r = T/T_c$$

 $P_r = P/P_c$

$$Z = f\left(\frac{\varepsilon_0}{kT}\right) \frac{\sqrt{Nr_0^3}}{\sqrt{V}} \frac{\mu^2}{\varepsilon_0 r_0^3} \frac{\theta^2}{\sqrt{\varepsilon_0 r_0^5}} \frac{\kappa}{\sqrt{r_0^3}} \frac{\overline{\alpha}}{\sqrt{\varepsilon_0 r_0^5}} \frac{\mu^2 \overline{\alpha}}{\sqrt{\varepsilon_0 r_0^5}} \frac{\mu^2 \overline{\theta}^2}{\sqrt{\varepsilon_0 r_0^5}} \dots\right). \tag{3.54}$$

The $\overline{\alpha}/\sigma_0^3$ term enters from an Axilrod-Teller (1943) nonadditivity correction to three-body interactions, and not directly from the perturbation treatment. The reduced $\mu^2\overline{\alpha}$ term arises chiefly from the three-body second term, and only slightly from the perturbation.

© 2011 - IFP Energies nouvelles

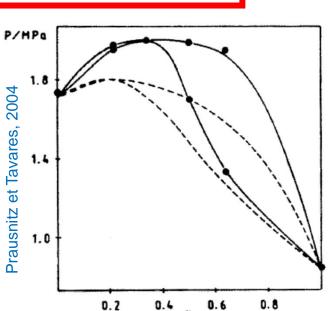
L'exemple du génie chimique : les équations d'état cubiques

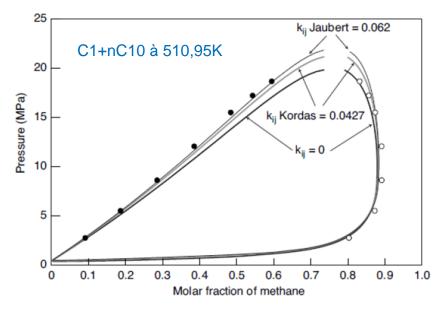
$$P = \frac{RT}{v - b} - \frac{a(T)}{v(v + b)}$$

Peng-Robinson

$$P = \frac{RT}{v - b} - \frac{a(T)}{v(v + b) + b(v - b)}$$

Soave-Redlich-Kwong




Figure 18. Calculated and experimental VLE for sulfur dioxide (1)-propane (2) at 50 °C.

Thermodynamique pour les pioprocedes = 12/12/2012

$$a = f(T_c, P_c, \omega) \qquad b = f(T_c, P_c)$$

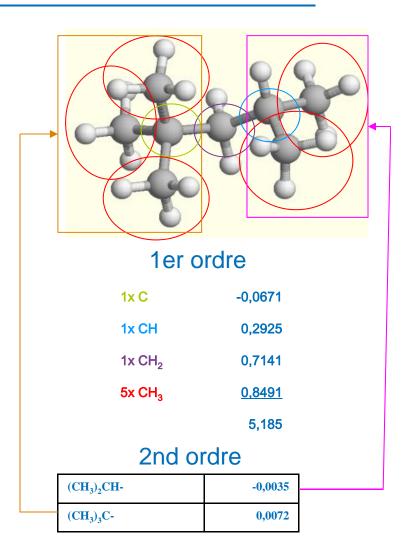
$$a = \sum_{i} \sum_{j} x_i x_j \sqrt{a_i a_j} (1 - k_{ij})$$

$$b = \sum_{i} x_i b_i$$

http://books.ifpenergiesnouvelles.fr/ebooks/thermodynamics/04/exo_04_04.html

L'exemple du génie chimique : d'où viennent les Tc, Pc et ω ?

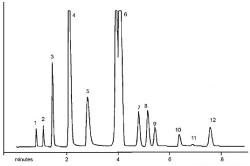
Si les molécules ne sont pas renseignées dans les BdD, on utiliser les **méthodes de contribution de groupes**

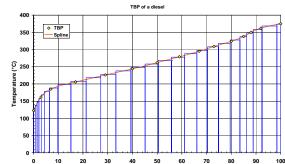

$$f(X) = \sum_{i} N_{i}C_{i} + w \sum_{i} M_{i}D_{i} + z \sum_{i} O_{i}E_{i}$$

1er ordre

2nd ordre

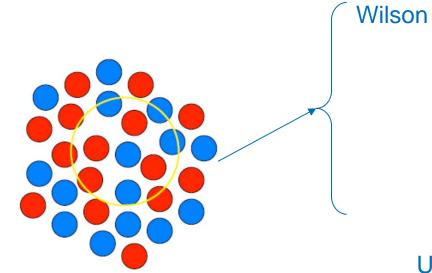
3ème ordre


Les méthodes de Marrero-Gani (2001) sont parmi les plus utilisées pour estimer les Tc, PC et ω des molécules (hydrocarbures, oxygénées, soufrées, azotées).

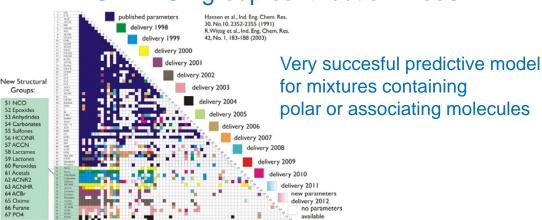


L'exemple du génie chimique : quid des charges complexes ?

On identifie les constituants majoritaires par des techniques analytiques GC, GC2D, a...)


A partir d'une courbe de distillation, on identifie des pseudoconstituants par classe de volatilité

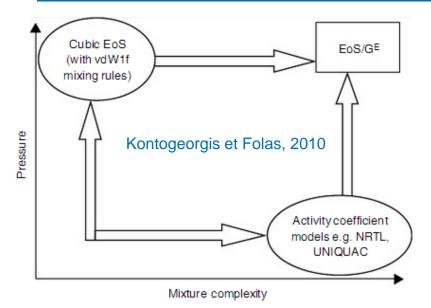
- →Le génie chimique pétrolier dispose ainsi d'une palette d'outils ayant atteint une grande maturité et permettant de traiter un spectre large de fluides pétroliers ...
- →La raison du succès tient à ce que cette thermodynamique est focalisée sur la description et la restitution de la volatilité
- → C'est aussi l'une de ses limites puisque les **non idéalités de la phase liquide** sont fortement sous estimées !

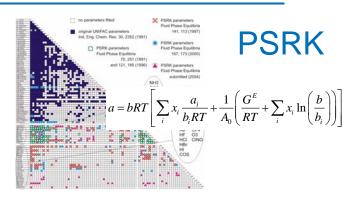

L'exemple du génie chimique : les non idéalités de la phase liquide

Composition locale différente de la composition globale en raison des interactions spécifiques (e.g. polarité, liaisons hydrogène, ...)

$$\begin{split} & \ln \gamma_1 = -\ln(x_1 + \Lambda_{12}x_2) + x_2 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{\Lambda_{21}x_1 + x_2} \right] \\ & \ln \gamma_2 = -\ln(x_2 + \Lambda_{21}x_1) - x_1 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{\Lambda_{21}x_1 + x_2} \right] \\ & \ln \gamma_1 = \ln \frac{\Phi_1^*}{x_1} + \frac{z}{2} q_1 \ln \frac{\theta_1}{\Phi_1^*} + \Phi_2^* \left[l_1 - \frac{r_1}{r_2} l_2 \right] \\ & - q_1 \ln(\theta_1 + \theta_2 \tau_{21}) + \theta_2^* q_1^* \left[\frac{\tau_{21}}{\theta_1 + \theta_2 \tau_{21}} - \frac{\tau_{12}}{\theta_2 + \theta_1^* \tau_{12}} \right] \\ & \ln \gamma_2 = \ln \frac{\Phi_2^*}{x_2} + \frac{z}{2} q_2 \ln \frac{\theta_2}{\Phi_2^*} + \Phi_2^* \left[l_2 - \frac{r_2}{r_1} l_1 \right] \\ & - q_2^* \ln(\theta_2 + \theta_2 \tau_{12}) + \theta_1^* q_2^* \left[\frac{\tau_{12}}{\theta_2 + \theta_1^* \tau_{12}} - \frac{\tau_{21}}{\theta_1 + \theta_2^* \tau_{21}} \right] \end{split}$$

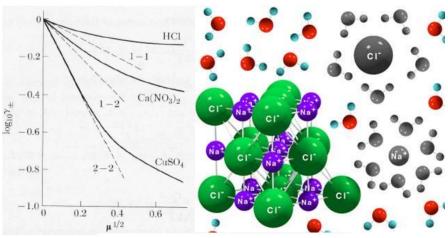
UNIFAC: group contribution model



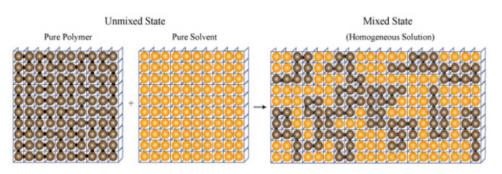


L'exemple du génie chimique : les équations d'état prédictives

Règles de mélange d'Huron-Vidal, Wong-Sandler, MHV1, MHV2, ...


$$\begin{split} P = \frac{R \cdot T}{v + c - b} - \frac{\alpha \cdot a(T)}{(v + c) \cdot (v + c + b) + b \cdot (v + c - b)} \\ \bigvee \mathbf{TPR} \quad g_{res}^E = R \cdot T \cdot \sum x_i \cdot \ln \ \gamma_{res,i} \end{split}$$

$$k_{ij}(T) = \frac{-\frac{1}{2} \sum_{k=1}^{N_g} \sum_{\ell=1}^{N_g} (\alpha_{ik} - \alpha_{jk}) \cdot (\alpha_{i\ell} - \alpha_{j\ell}) A_{k\ell} \left(\frac{298,15}{T/K}\right)^{\left(\frac{B_{k\ell}}{A_{k\ell}} - 1\right)} - \left(\frac{\sqrt{a_i}}{b_i} - \frac{\sqrt{a_j}}{b_j}\right)^2}{2\frac{\sqrt{a_i \cdot a_j}}{b_i \cdot b_j}}$$

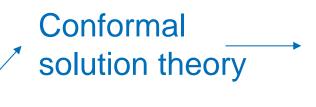

L'exemple du génie chimique : autres systèmes complexes

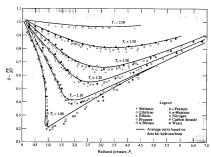
 $\ln \gamma_{\pm} = 2.303 \log \gamma_{\pm} = A' \sqrt{I} z_{+} z_{-}.$

Electrolytes

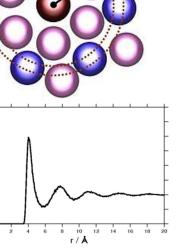
Loi de Debye-Hückel

Polymères


Théorie de Flory-Huggins

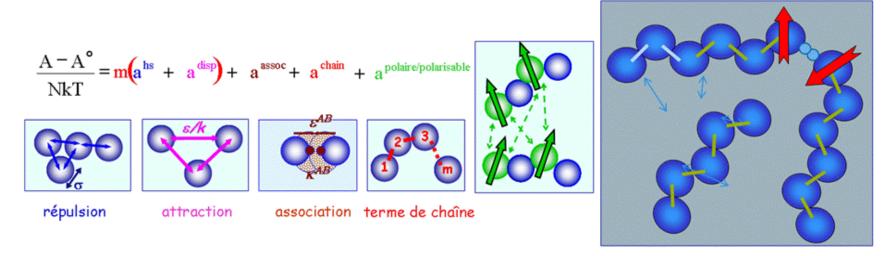


Nouvelles approches thermodynamiques : introduction


e.g. Etats correspondants

Théorie des phases fluides

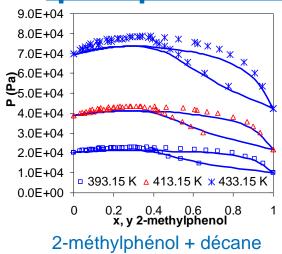
Perturbation theory

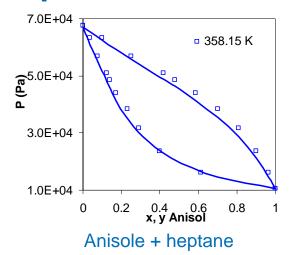

L'énergie libre de Helmholtz est obtenue en « corrigeant » le comportement d'un fluide de référence avec des perturbations qui dépendent de g(r)

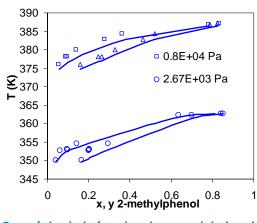
Nouvelles approches thermodynamiques : la famille des équations SAFT

 Les équipes du LSPM et d'IFPEN développent depuis plusieurs années une version polaire de SAFT

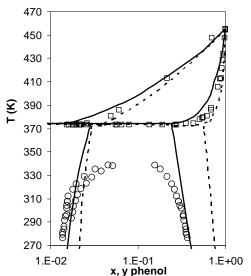
SAFT – Statistical Associating Fluid Theory



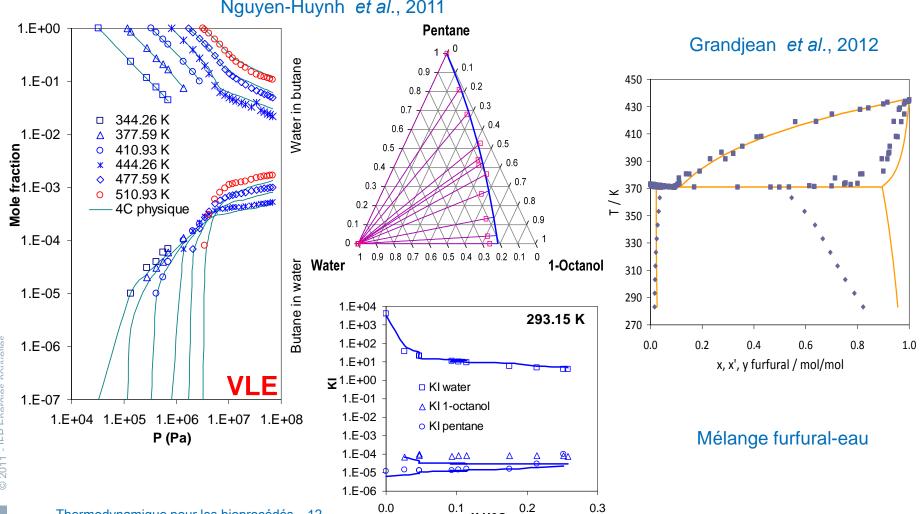

PC-SAFT – Perturbed Chain (Gross & Sadowski, 2001)
GC-SAFT – Group Contribution (Tamouza, 2004)
PPC-SAFT – Polar Perturbed Chain (Nguyen-Huynh, 2009)
ePPC-SAFT – electrolytes version (Rozmus, 2012)



Nouvelles approches thermodynamiques : quelques exemples avec GC-PPC-SAFT

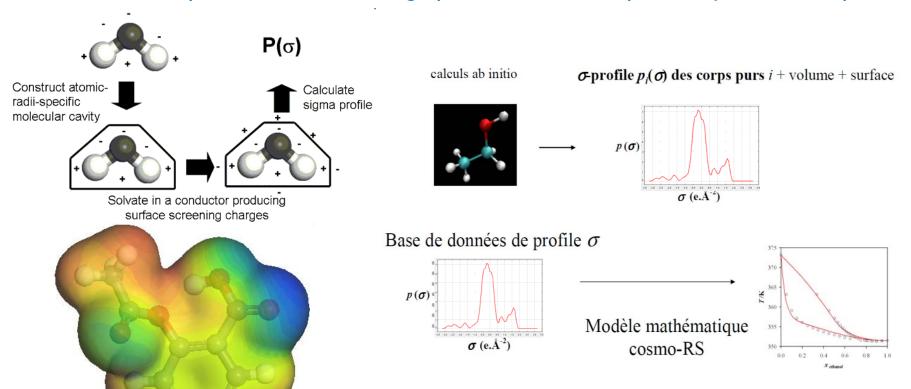


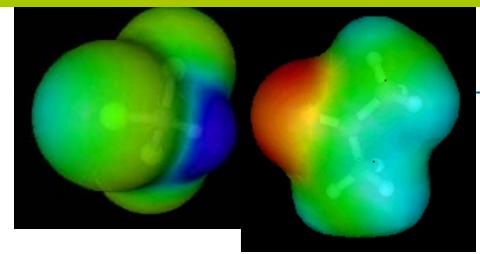
2-méthylphénol + benzaldehyde

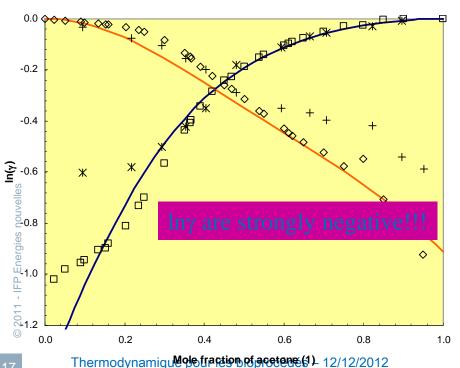


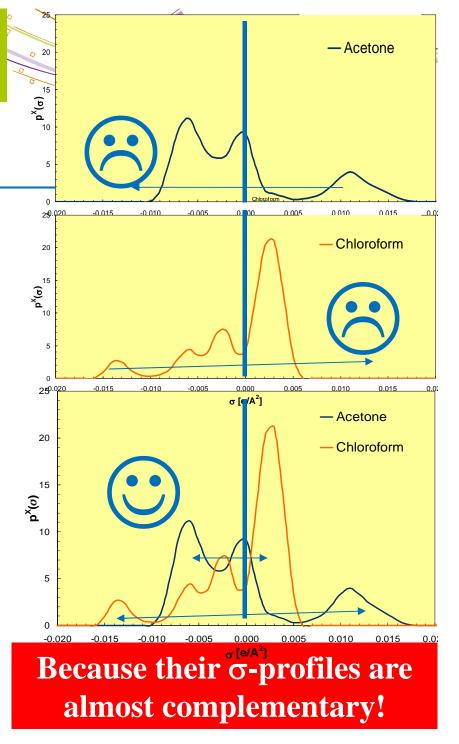
Nouvelles approches thermodynamiques: quelques exemples avec GC-PPC-SAFT

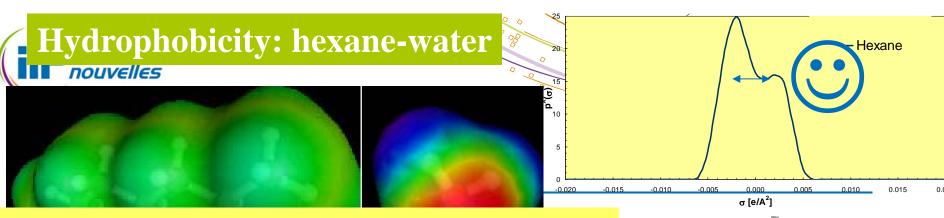
Nguyen-Huynh et al., 2011


X H2O

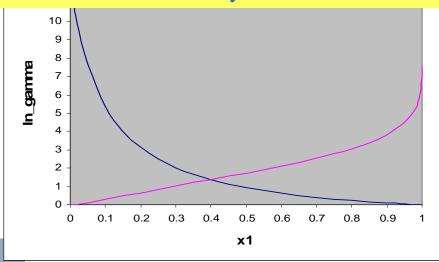


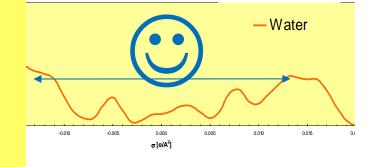

Nouvelles approches thermodynamiques : les approches COSMO


COSMO-RS (société COSMOLogic), COSMO-SAC (code Open Source)

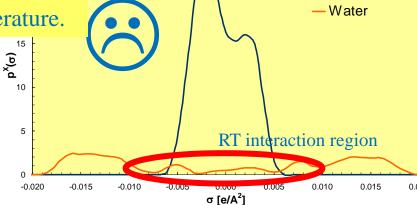


Why do acetone and chloroform like each other so much?




 $ln\gamma^{\infty}$ values are 13 for hexane in water and 8 for water in hexane!!! Hexane and water are only marginably soluble in each other!

Hexane in water selects the few less polar surface segments of the water. This causes an almost negligiable H^{ex} but goes along with a large loss of entropy.


→ The hydrophobic effect is of entropic nature!

→ Water has a solubility minimum at about room temperature.

— Hexane

Hexane and water hate each other!

Nouvelles approches thermodynamiques : NRTL-SAC

Cheng & Song, 2004

$$\ln \gamma_{I} = \ln \gamma_{I}^{C} + \ln \gamma_{I}^{R}$$

$$\ln \gamma_{I}^{R} = \ln \gamma_{I}^{lc} = \sum_{i} r_{i,I} [\ln \Gamma_{i}^{lc} - \ln \Gamma_{i,I}^{lc}]$$

$$\ln \gamma_{i}^{C} = \ln \frac{\Phi_{I}}{x_{I}} + 1 - r_{I} \sum_{J} \frac{\Phi_{J}}{r_{J}}$$

$$\ln \Gamma_{i}^{lc} = \frac{\sum_{j} x_{j} G_{ji} \tau_{ji}}{\sum_{k} x_{k} G_{ki}} + \sum_{I} \frac{x_{I} G_{iI}}{\sum_{k} x_{k} G_{kl}} \left(\tau_{iI} - \frac{\sum_{j} x_{j} G_{jI} \tau_{jI}}{\sum_{k} x_{k} G_{kl}}\right)$$

$$r_{I} = \sum_{i} r_{i,I}$$

$$\ln \Gamma_{i,I}^{lc} = \frac{\sum_{j} x_{j,I} G_{ji} \tau_{ji}}{\sum_{k} x_{k,I} G_{ki}} + \sum_{I} \frac{x_{I,I} G_{iI}}{\sum_{k} x_{k,I} G_{kl}} \left(\tau_{iI} - \frac{\sum_{j} x_{j,I} G_{jI} \tau_{jI}}{\sum_{k} x_{k,I} G_{kl}}\right)$$

$$\Phi_{I} = \frac{r_{I} x_{I}}{\sum_{I} r_{I} x_{I}}$$

Chaque molécule est représentée par un quadruplet pondérant les quatre types de comportement

X: hydrophobe

Y-: polaire attractif

Y+: polaire répulsif

Z: hydrophile

TABLE I.3: Paramètres d'interaction binaire pour le modèle NRTL-SAC.

Type du segment 1	X	X	Y^-	Y^+	Z
Type du segment 2	Y^-	Z	Z	Z	Y^+
$ au_{12}$	1,643	6,547	-2,000	2,000	1,643
$ au_{21}$	1,834	10,949	1,787	1,787	1,834
α	0,2	0,2	0,3	0,3	0,2

Applications dans le domaine des bioprocédés

Table 1 Potential role of thermodynamics in biotechnology

Prediction of biomolecular properties

Prediction of phase equilibria for downstream processing Structural and functional stability of proteins and other biomolecules

Biocatalysis: Effect of T, pH, P, solvents and solutes on activity and selectivity

Correct driving forces and equilibrium position for general bioprocess design

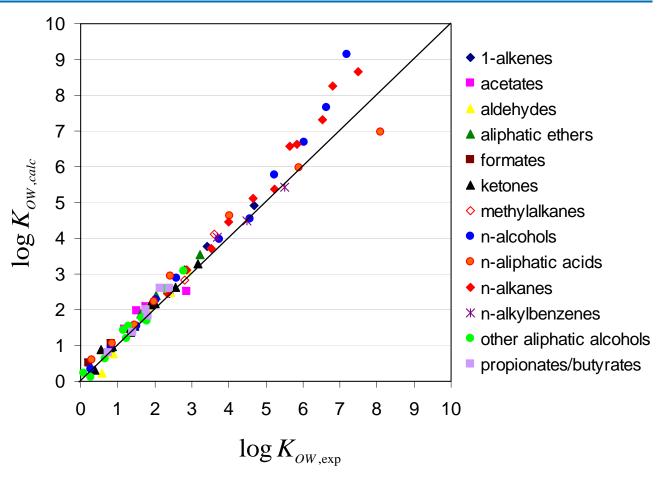
Thermodynamic effects in cellular growth, including heat generation

Efficiency of cellular metabolism: Optimal biomass and product yields

Efficiency of bioprocesses

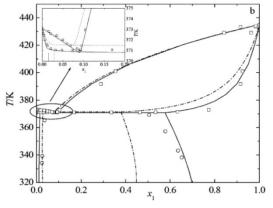
Von Stockar & van der Wielen, 1997

Kontogeorgis & Folas, 2010


Application	References	Thermodynamics needed	Comments/status
Controlled drug release – drug delivery via polymeric devices	Prausnitz ²⁹	Solubility of pharmaceuticals in poly- mers (SLE)	Michaels et al. 58 model (FH + diffusion) with limited success for a few pharmaceuticals
Solvent screening for phar- maceuticals (separation and recovery of amino acids and antibiotics)	Franck et al. ²³ Kolar et al. ²⁶ Abildskov and O'Connell ¹⁹⁻²¹ Stockar et al. ³⁴ Prausnitz et al. ⁵⁷	SLE (drug solubility in liquids)	QSAR of various types ^{59,60} Classical models (HSP, UNIFAC) – capabilities but also limitations Hybrid models: NRTL–SAC from ASPEN Quantum chemistry: COSMO–RS New theoretically oriented EoS, e.g. PC–SAFT
Novel separations for phar- maceuticals and other biomolecules – SCFE	Larson and King ²² Prausnitz et al. ⁵⁷	Solubility of biomolecules in CO ₂ -co-solvent (SGE)	Limited modeling success for complex molecules and co-solvents
Novel separations for proteins – reverse micelles	Prausnitz ³²		
Understanding of protein–protein interactions in solutions	Prausnitz <i>et al.</i> ⁵⁷ Gupta and Olson ¹⁶ Sandler ³⁸	Osmotic second virial coefficient – as a function of solubility and link to intermolecular potential	Obtained via osmometry or LALS
Inderstanding of the mechanisms of certain diseases (cataract, Alzheimer's, sickle-cell anemia)	Prausnitz ³³ Galkin <i>et al.</i> ⁶¹ Pande <i>et al.</i> ⁶²	Protein aggregation and complexing (SLE, LLE)	Thermodynamics and colloid theory (DLVO)
for controlled release de- vices, contact lenses, etc.	Prausnitz ³²	Swelling	
Classical' separation meth- ods for proteins, e.g. protein precipitation from aque- ous solutions using salts and selective separation	Prausnitz ^{2,29} Sandler ³⁸ Chen and Mathias ¹⁴	SLE, LLE of water— protein—salt as a function of numerous parameters (temperature, salt—protein concentration, ionic strength, pH, etc.)	Various models available of unknown predictive value
TPS for protein separation	Prausnitz ³² Prausnitz and Tavares ⁷	LLE of water-protein-salt (s)-polymer (s), e.g. PEG or Dextran	

Applications dans le domaine des bioprocédés : calcul de Kow par GC-PPC-SAFT

Travail de thèse en cours non publié (merci à TB Nguyen)



Nouvelles approches thermodynamiques : quelques résultats issus de MEMOBIOL

Table 2. Octanol-Water Partition Coefficients (Log P) for Some Biofuel-Related Compounds at 298.15 K

			COSMO- RS	COS	MO-SAC	mCO8	SMO-SAC	
system	CAS number	experimental (or estimated) values of log p^{51-53}	BP-TZVP	VT-2005	new geometry ^a	VT-2005	new geometry ^a	UNIFAC
fumaric acid	110-17-8	0.46	0.4078	0.0718	0.4788	-0.0551	0.3847	-0.5220
itaconic acid	97-65-4	-0.34 (EST)^{b}	0.0623	0.1785	-0.1276	0.0671	-0.2342	-0.1153
levulinic acid	123-76-2	-0.49	-0.3795	-0.1547	-0.3300	-0.1693	-0.3511	-0.5477
glycerol	56-81-5	-1.76	-1.1474	-1.4731	-1.6434	-1.4233	-1.6024	-1.5473
sorbitol	50-70-4	-2.20	-0.6512	-1.7864	-2.2037	-1.7053	-1.9763	-3.2105
furfural	98-01-1	0.41	0.2059	-0.1232	0.2928	-0.1777	0.2611	0.7132
anisole	100-66-3	2.11	2.2183	1.6020	1.8245	1.4998	1.7135	2.1970
m-cresol	108-39-4	1.96	1.9731	1.5838	1.7948	1.4431	1.6454	2.7259
vanillin	121-33-5	1.21	1.1670	1.0430	1.2017	0.9486	1.0914	1.1247
quinone	106-51-4	0.20	0.3072	0.0561	0.0733	0.0439	0.0622	
AAD^c			0.3202	0.3671	0.1214	0.4207	0.1818	0.4143
R^d			0.9525	0.9753	0.9961	0.9744	0.9983	0.9587

Figure 6. VLE and LLE of the furfural (1) + water (2) mixture at: pressure *P* = 101.3 kPa predicted with (— and ···) COSMO-based models compared to (□ and ○) experimental data: ⁶⁰ (a) curves predicted with (—) COSMO-SAC and (···) mCOSMO-SAC predictions and (b) curves predicted with COSMO-RS + (—) BP-TZVP and (···) BP-SVP databases. (□, VLE data; ○, LLE data).

Li et Paricaud, 2012

Les approches COSMO-SAC ou COSMO-RS donnent des résultats comparables et légèrement meilleurs que ceux d'UNIFAC

Applications bioprocédés : coefficient d'activité / solubilité d'acides aminés

Pinho et al., 1997

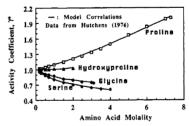


Figure 3. Experimental and calculated values for activity coefficients of amino acids in water at 298.15 K.

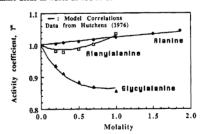
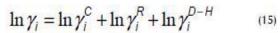



Figure 4. Experimental and calculated values for activity coefficients of alanine and some peptides in water at 298.15 K.

UNIFAC modifié (terme de Debye-Huckel)

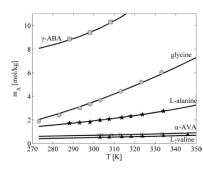
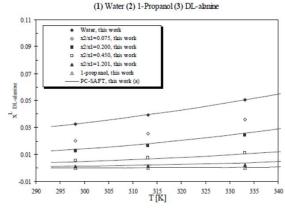



Figure 4. Amino-acid solubilities in water. Symbols represent experimental data: (squares) γ -ABA, (circles) glycine, (stars) L-alanine, (crosses) DL- α -AVA, (triangles) L-valine; lines are calculations with PC-SAFT.

Held et al., 2011

Fonseca Ferreira, 2011

Utilisation de PC-SAFT (paramètres des acides aminés purs ajustés sur les binaires eau-acide, seul un kij est requis pour

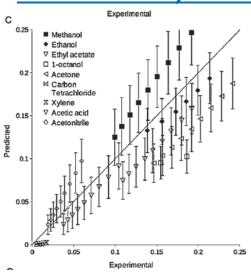
Table 6.4 Binary interaction PC-SAFT parameters of amino acid/water systems.

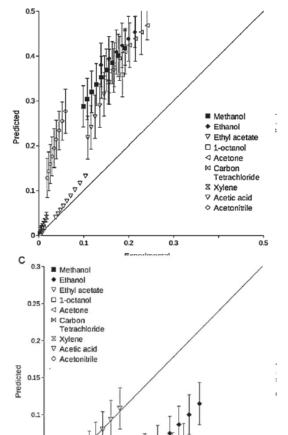
	Glycine	DL-alanine	L-serine	L-threonine	L-isoleucine
Water	-0.10	-0.10	-0.12	-0.10	-0.03

Table 6.5 Hypothetical fusion properties for amino acids.

Amino acid	mel	$ \begin{array}{ccc} {\bf Enthalpy \ of \\ melting} & {\bf Melt} \\ {\bf temper} \\ \Delta H_o \ [{\bf kJ.mol}^{-1}] & T_o \end{array} $			Difference in the heat capacity ΔC_p [kJ.mol ⁻¹ .K ⁻¹]		Solubility data source	ARD*
		SD		SD		SD	source	
Glycine	21.97	1.8E-1	489.78	2.4E0	neg	lected	(a, g)	1.68
DL-alanine	15.98	3.2E-2	581.72	1.0E0	neg	lected	(a, b, g)	0.33
L-serine	24.54	9.8E-1	375.28	3.7E0	neg	lected	(c, d, e, g)	8.19
L-threonine	17.72	1.6E-1	637.12	5.8E0	neg	lected	(f, g)	1.45
L-isoleucine	11.27	8.9E-1	621.28	3.7E+1	0.073	6.1E-3	(g, h)	1.08

(a) Dalton and Schmidt (1933); (b) Dunn et al. (1933); (c) Hutchens (1976); (d) Jin and Chao (1992); (e) Luk and Rousseau (2006); (f) Profir and Matsuoka (2000); (g) This work; (h) Zumstein and Rousseau


Estimation des propriétés de fusion des acides aminés

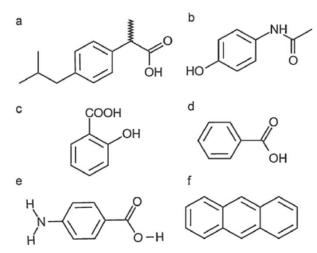


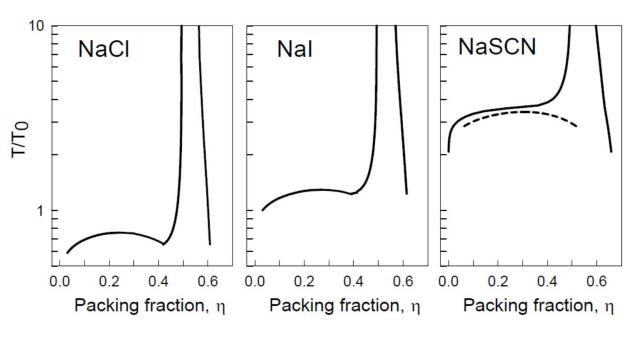
Applications bioprocédés : prédiction avec UNIFAC, COSMO-SAC et NRTL-SAC

Bouillot et al., 2011

Experimental

Solubilité de l'acide salycilique dans différents solvants




Fig. 1. (a) Ibuprofen, (b) paracetamol, (c) salicylic acid, (d) benzoic acid, (e) 4-aminobenzoic acid and (f) anthracene.

Aucun modèle ne parvient à prédire convenablement les solubilités ou leur comportement en fonction de la température

Applications bioprocédés : diagrammes de phase des protéines

Bostrom et al, 2006

$$\frac{A}{Nk_BT} = \frac{A^{HS}}{Nk_BT} + \frac{A^P}{Nk_BT}$$

Utilisation de la théorie de la perturbation (appliquée via un potentiel de force moyenne ajusté sur des simulations Monte Carlo) pour restituer le comportement solide-fluide de la lysozime dans des solutions d'électrolytes

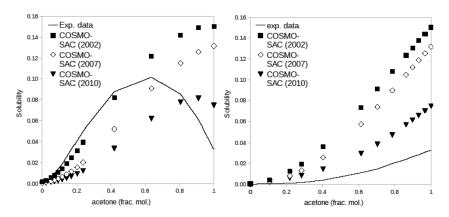
Applications bioprocédés: remarques finales (Kontogeorgis et Folas, 2010)

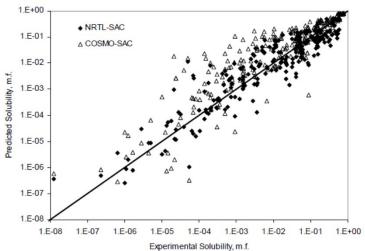
- Pour les produits pharmaceutiques, les modèles disponibles sont les extensions de NRTL ou d'UNIFAC (éventuellement des versions « locales »), les approches COSMO ou bien les approches plus empiriques basées sur les paramètres de solubilité
- Des approches de type UNIFAC (étendu) ou plus récemment PC-SAFT sont disponibles pour traiter les systèmes en présence d'acides aminés (et parfois les peptides)
- Des approches pur modéliser le comportement thermodynamique des protéines (travaux de Prausnitz) ou bien sur les processus d'adsorption des protéines (Kontogeorgis et Folas, 2010) sont disponibles

Axes de travail futurs

- Développement d'approches prédictives
 - Travaux théoriques sur les équations pour tenir compte de la complexité (e.g. interactions intermoléculaires, ramifications, coopérativité, ...)
 - Travaux sur les méthodes de paramétrage (e.g. contributions de groupes, utilisation de descripteurs moléculaires, indices
- Etablir les liens avec les données expérimentales et analytiques disponibles
 - Faute de pouvoir utiliser la volatilité, quelles propriétés globales peuvent permettre de développer des approches prédictives
- Renforcer également les liens avec la simulation moléculaire et le calcul quantique
 - Peut aider à comprendre le comportement et à paramétrer les équations dans certains cas

Innovating for energy


www.ifpenergiesnouvelles.com


Applications bioprocédés : prédiction avec UNIFAC, COSMO-SAC et NRTL-SAC

<u>Figure 1:</u>. Solubility prediction of paracetamol at 20 °C in mixtures of water/acetone and toluene/acetone as a function of the acetone molar fraction using COSMO-SAC 2002, 2007 and 2010.

Bouillot et al, 2011

Mullins, 2007

Quelques applications bioprocédés : diagrammes de phase avec protéines

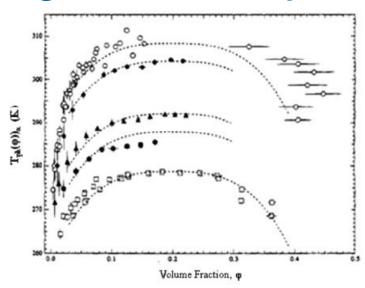


Figure 4-3. Sections of the coexistence surface for aqueous two-protein solutions of γ_{IIIa} and γ_{IIIb} Crystallin at different fixed compositions, α , defined as the ratio of the number of γ_{IIIa} Crystallin molecules to the total number of protein molecules. Experimentally determined points correspond to $\alpha=0.0$ (\square), $\alpha=0.18$ (\bullet), $\alpha=0.28$ (\bullet), $\alpha=0.64$ (\bullet), and $\alpha=1.0$ (\bigcirc). The dotted curves represent theoretical predictions. Adapted from ref 19.

Prausnitz, 2003

Dey & Prausnitz, 2011

$$\frac{G}{V} = \frac{G_{\rm o}}{V} + \frac{k_{\rm B}T}{\Omega_p} \left[\varphi \ln \varphi - \frac{\varphi - 6\varphi^2 + 4\varphi^3}{\left(1 - \varphi\right)^2} \right] - \frac{k_{\rm B}T}{\Omega_p} U \varphi^2$$
Lattice model (mean field approximation)

Carnahan-Starling equation for the entropy of mixing of hard spheres

What molecules?

Nom	Formule
Acide fumarique	но
Acide 3-hydroxypropionique	но
Acide Itaconique	но
Acide Levulinique	HO CH₃
3-hydroxybutyrolactone	но
Glycerol	HO _\OH
Sorbitol	HO OH OH
Furfural	Ö
2,5 furane acide dicarboxylique	но

- Pure

- In binary / ternary solutions with **Solvents** (water, toluene, hexane, octanol ...)

Nom	Formule
Anisole	© CH₃
m-Cresol	HO CH ₃
Catechol	ОН
Guaiacol	OH OH
Eugenol	HO O-CH ₃
Vanillin	HO CH3
Acide vanilic	HO OCH ₃
Quinone	0===0
Syringol	H ₃ CO OCH ₃

What predictive models ? (2)

- Molecular Simulation methods
 - Use of Gibbs Ensemble Monte Carlo for phase equilibria (Panagiotopoulos , Mol. Phys., 1987) with AUA and UA force fields
 - Use of either Monte Carlo or molecular dynamics (LAMMPS) for phase properties (density, energy, derivative properties)
 - Description of molecules using the Anisotropic United Atom (AUA), TraPPE-UA and PCFF force fields
 - Extended coverage, large applicability
 - Good compromise between accuracy and computing time

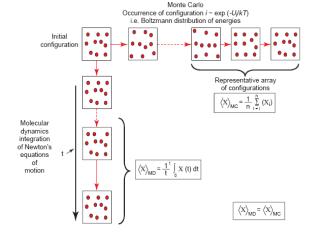
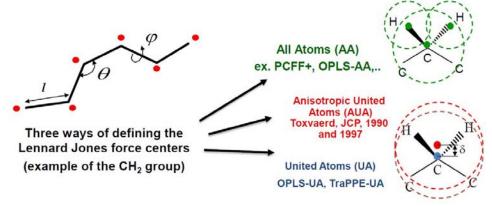
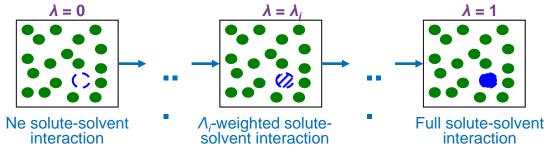
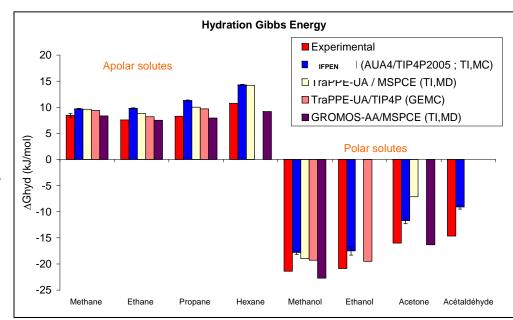



Figure 2

and intra-molecular)

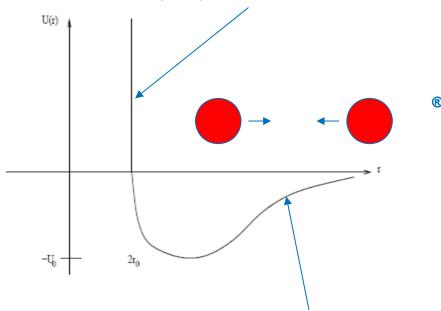
The two ways of building a statistical ensemble: Molecular dynamics (MD) and Monte Carlo (MC) simulation. Average properties can be determined from time averages in MD and from ensemble averages in MC. Both averages are equivalent, as a consequence of the


$$U = \sum_{i,j} U^{LJ}_{ij} + \sum_{i,j} U^{el}_{ij} + \sum_{k} U^{stretch}(l_k) + \sum_{m} U^{bend}(\theta_m) + \sum_{n} U^{tors}(\varphi_n)$$
Lennard-Jones and Electrostatic energy (intersection). Electrostatic energy (intersection), bending and torsion



WP2 – Implementaion of the Thermodynamic Integration algorithm in the MC Gibbs code and evaluation

- Thermodynamic integration is used:
 - To predict solvation / hydration energies
 - To predict solubilities and inifinite dilution states
 - To predict partition coefficients
 - Can be used to predict K_{ow}



L'exemple du génie chimique paramètres :

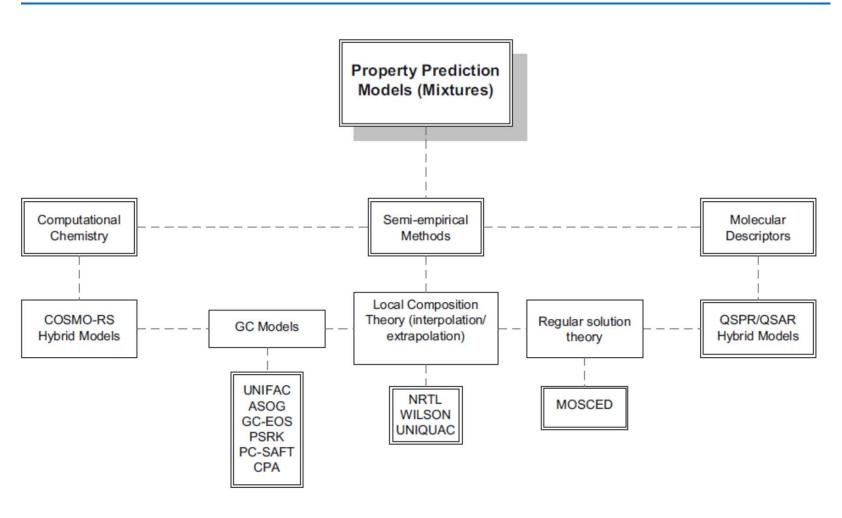
Forces répulsives prépondérantes

Forces attractives prépondérantes

 $\frac{U_0}{r_0}$ (ou ε)

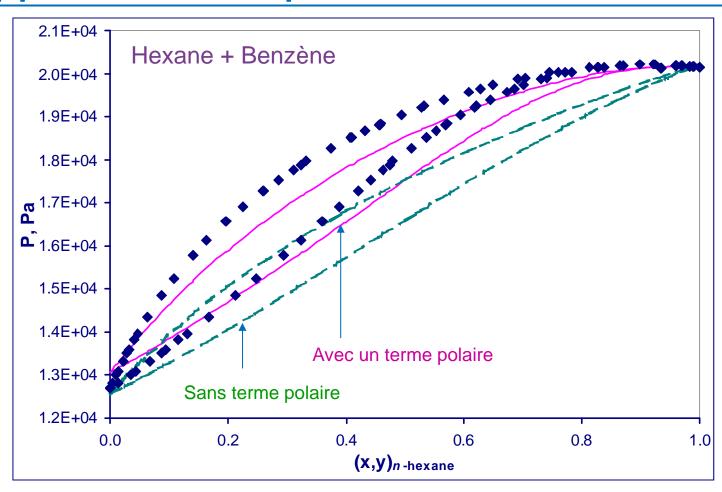
On peut se rapporter à des grandeurs macroscopiques mesurables :

Symbol	Meaning	Definition
y*	dimensionless distance	r/σ
\mathcal{E}^*	dimensionless energy	E/∈
T^*	dimensionless temperature	kT/ϵ
U^*	dimensionless internal energy	U/e
t *	dimensionless time	$t/[\sigma(m/\epsilon)^{0.5}]$
ν*	dimensionless velocity	$V/(\epsilon/m)^{0.5}$
₽*	dimensionless force	Fo∫€
₽*	dimensionless pressure	$P\sigma^3/\epsilon$
D^*	dimensionless self diffusion coefficient	$D/[\sigma(\epsilon/m)^{0.5}]$

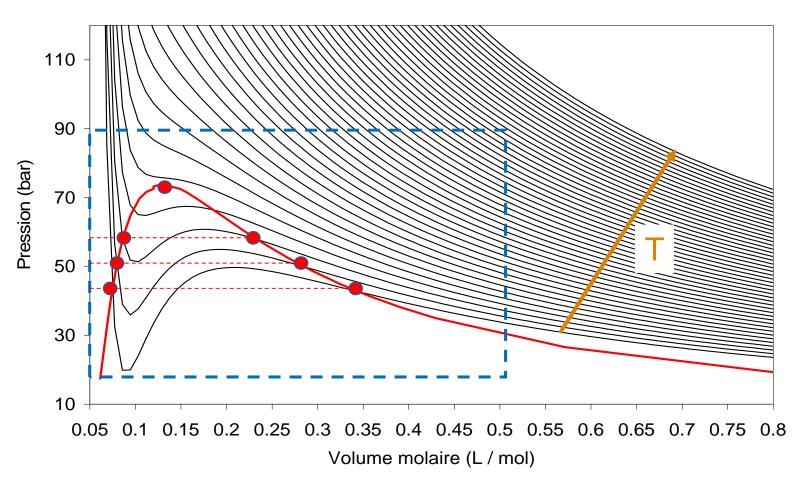

Utiliser une température et une pression

caractéristiques : Tc et Pc

Course structure		
	Lecturers	Potential applications
Fundamentals Phase equilibrium thermodynamics of non-electrolytes. Homogeneous mixtures, excess properties, VLE, LLE. S.LE in non-electrolyte	J.M. Prausnitz (UC Berkley)	General insight into phase equilibria
systems, activity coefficient models. Assessment of thermodynamic properties. Direct methods and use of Gibbs–Duhem equation	C.A. Haynes (UC Vancouver)	
Large molecules and charged species Electrolytes	C.A. Haynes	Solution behaviour of polymers and proteins salting out, precipitations, extraction, chromatography, swelling of resins, phase splitting, etc.
Polymers, polyelectrolytes, gels, demixing in polymersolutions, Donnan effect, swelling in hydrogels	J.M. Prausnitz	General relevance for DSP
Aqueous two-phase systems Correlative approach for complex biomolecules. Hydrophobicity and polarity, log P approach	C.A. Haynes L.A.M. van der Wielen (TU Delft)	
Phase equilibria in protein solutions. Integral theory of solution, potentials of mean force	J.M. Prausnitz	
Proteins, and biocatalysis Conformational and structural stability of proteins. Enthalpic and entropic effects, salts, solvent, temperature, denaturation, renaturation	W. Norde (A.U. Wageningen)	Biocatalysis in general and in non-conventional media, biocatalyst engineering, protein engineering, DSP, inclusion body reprocessing
Phase and reaction equilibria in biocatalysis. Effects of co-solvents, pH and salts	L.A.M. van der Wielen, F.E.D. van Halselma (TU Delft)	
Irreversible thermodynamics Thermodynamics of open and irreversible systems Mass transfer on the basis of IT. Multicomponent diffusion, multiple driving forces, flux coupling, membrane processes, ion exchange	L.A.M. van der Wielen, U. von Stockar (ETH Lausanne) L.A.M. van der Wielen	Insight, coupled fluxes in membrane processes, ion exchange, and living systems
Thermodynamics in living systems Energy dissipation in biotechnology. Heat generation, free energy dissipation and growth. Energy balances, biocalorimetry and monitoring of bioprocesses	U. von Stockar	Insight, heat removal, monitoring of bioprocesses, prediction of biomass and product yields, metabolic engineering
Description of microbial growth based on Gibbs energy yield and maintenance correlations	J.J. Heijnen (TU Delft)	
Optimal metabolic fluxes. Metabolic modelling and optimization	J.J. Heijnen	


- Précipitations, extraction, chromatographie, ...
 - Comportement en solution de polymères, d'espèces chargée, biocatalyse, protéines ...
- Processus membranaires, systèmes vivants

Von Stockar & van der Wielen, 1997



Nouvelles approches thermodynamiques : apport du terme polaire

