

Revalorisation des effluents thermiques :

Quels mélanges de travail pour les les pompes à chaleur à absorption-démixtion ?

Journée commune SFGP-SFT

6 janvier 2011

Les outils de la Thermodynamique des Fluides et de la Thermodynamique Energétique pour un procédé optimisé

- Optimisation énergétique de la distillation (diabatisation, microstructuration)
- Utilisation de chaleurs résiduaires (distillation multiples effets, pompes à chaleur)
- Revalorisation des chaleurs résiduaires (thermotransformateurs à absorption)

Etude / Développement de technologies pour la récupération/revalorisation des chaleurs résiduaires

- Distillation multiples effets à plaques (EASYMED)
- Evaporateurs spiralés

Pourquoi revaloriser les chaleurs résiduaires ?

- Beaucoup de chaleurs disponibles à 60 80 °C, mais peu d'applications
- Besoins de chaleurs vers 120 150 °C

Thermo-transformateur classique à absorption

Introduction

Thermo-transformateur à Absorption-Démixtion

Amelioration du cycle

Diagramme Enthalpie-composition

Mélange de travail

Caractéristiques requises :

- Large lacune de miscibilité
- > Séparation aisée des phases liquides ($\Delta \rho_{\text{lig}}$ important)
- Grande différence entre les températures d'ébullition

		Pliquide 20°C	T _{eb sous} P _{atm}
<u>Mélange</u> initial : ≺	N-heptane (C ₇ H ₁₆)	684 kg/m ³	98,4 °C
	DMF (C ₃ H ₇ NO)	945 kg/m ³	153 °C

Démixtion : A 20 °C et P_{atm} , x = 0,067 et x' = 0,935

Un cycle techniquement faisable ...

• De nombreux mélanges simulés permettent d'obtenir un saut thermique.

• Saut thermique observés expérimentalement de manière reproductible avec le mélange n-heptane/DMF. $\Delta t_i = 8$ °C.

Mais des performances limitées...

Que ce soit expérimentalement ou par la simulation, le saut thermique reste insuffisant pour une utilisation industrielle.

Objectif : $\Delta t_i = 50^{\circ}C$

NECESSITE DE TROUVER DES MELANGES DE TRAVAIL ADAPTES ET PERFORMANTS

Stratégie adoptée

- Choix d'un mélange de référence : n-heptane/DMF
- Choix d'un cycle simple de référence

• Choix de modèles simples pour les propriétés en privilégiant le « <u>sens</u> <u>physique</u> » des paramètres.

• Variation des paramètres du modèle de manière artificielle

Création d'un « mélange virtuel » permettant de connaître les propriétés clés du mélange de travail

Modèle thermodynamique « simplifié »

Hypothèses de calcul pour la simulation

- Echangeurs et colonne adiabatiques
- Pincement minimum de 5°C dans les échangeurs de chaleur
- Phases liquides en sortie du décanteur parfaitement séparées et en équilibre
- Colonne de rectification inverse = succession d'étages théoriques
- Pertes de charge négligeables

INFLUENCE DES PROPRIETES DU MELANGE

Propriété	Valeur minimale	Valeur de référence	Valeur maximale
Lv ₁ (J/mol) (plus volatil)	22212	31730 (heptane)	41250
Lv ₂ (J/mol) (moins volatil)	27587	39409 (DMF)	51232
Cp _{I1} (J/mol/K)	156	225 (heptane)	290
Cp ₁₂ (J/mol/K)	105	148 (DMF)	195
Cp _{g1} (J/mol/K)	84	120 (heptane)	156
Cp _{g2} (J/mol/K)	51	72 (DMF)	95
K (Eq. Courbe ELL)	0,219	0,313	0,407
K' (Eq. Courbe ELL)	- 0,385	- 0,296	-0,207
T _{csm}	39,01	73,8	95,8
X _{csm}	0,37	0,52	0,68
b ₁₂ (Modèle NRTL)	1122	1602	2083
b ₂₁ (Modèle NRTL)	862	1232	1602
α (Modèle NRTL)	0,391	0,5592	0,73

Influence de la chaleur latente de vaporisation Lv

Influence de Cp des composés liquides

Capacité calorifique des liquides Cpli(J/mol/K)

Influence des paramètres de la courbe de miscibilité

Influence de K et K'

K' ou K

Variation simultanée des 9 propriétés étudiées

⇒ Recherche des propriétés optimales du mélange de travail:
Domaine étudié ± 30% autour des propriétés : heptane / DMF
⇒ Comparaison des deux types de cycle

Autres paramètres de l'équation de Cox and Herington : $x_{csm} = 0,52$; $T_{csm} = 73,8$ °C; $\xi = 3 : \Rightarrow$ valeurs initiales

Lv ₁	Lv ₂	Cp _{I1}	Cp _{I2}	К	K′	b ₁₂	b ₂₁	α
J/mol J/mol/K				Cal/mol				
22111 (-30%)	43350 (+10%)	156 (-30%)	105 (-30%)	0,41 (+30%)	-0,33 (+10%)	2083 (-30%)	862 (-30%)	0,73 (+30%)

Variation simultanée des 9 propriétés étudiées (suite)

Diagramme T-x,y

Diagramme H-x,y

Pour NET = ∞ et J = 1

Étude de l'influence des propriétés du mélange sur le ∆T _{i max} ↓ Les propriétés les plus influentes

Critères de choix pour les mélanges de travail

- Largeur de la lacune de miscibilité ⇒ Critère primordial
- Lv₂ élevée
- Cp₁₂ faible

Suite de l'étude...

- Simulation d'un très grand nombre de mélange présentant une démixiton liquide
- Utilisant de la DDB et PROII
- Comparaison des résultats avec l'étude paramètrique
- Identification des familles de mélanges intéressants
- Etablissement de corrélations entre performances et propriétés du mélange

