Mise en place d'une méthodologie d'Expérimentation à Haut Débit pour le captage du CO₂

Dr. Fabien PORCHERON

Département Séparation - IFP énergies nouvelles Solaize

Problématique

Contrôle des émissions de CO₂

Effet de serre

- Phénomène naturel mais...
- Surplus engendré par activités industrielles

Solutions préconisées

CCS CO₂

- Traitement fumées industrielles
- Captage sélectif CO₂
 - → Transport → Stockage
- Centrales thermiques à charbon

Centrales thermiques à charbon

- Contrôle des émissions de CO₂
- Emetteur important
 - Centrale thermique de 600 MW \rightarrow ~4 Mt de CO₂ par an
 - 1500 centrales aux USA
 - 2 centrales thermiques par semaine en Chine
- Problématique Captage CO₂

/ Post - combustion / Procédé de séparation par solvants

Un bon solvant ?

Liste de critères variable

- Dépend de la cible
- Dépend des priorités

Principaux

- Thermodynamique
- Cinétique
- Dégradation
- Secondaires
 - Pertes
 - Coût
 - Toxicité
 - Propriétés φχ (ex.: viscosité)

Problème multidimensionnel

Thermodynamique

Isothermes d'absorption

- T = cte, équilibre thermodynamique
- Pression partielle en CO₂
- Taux de charge du solvant α

Différents types de solvants

- Solvants physiques
 - Liaisons van der Walls, ...
 - Faible enthalpie
 - Capacité faible vs force motrice

VS

Solvants chimiques

- Liaisons chimiques
- Forte enthalpie de réaction
- Capacité forte vs force motrice

Différents types de solvants

- Solvants physiques
 - Pas de liaisons chimiques
 - Faible enthalpie de réaction
 - Capacité faible vs force motrice

Augmenter la capacité

VS

Solvants chimiques

- Liaisons chimiques
- Forte enthalpie de réaction
- Capacité forte vs force motrice

Amines

Fonction azote "N"

- $\blacksquare R_1 R_2 R_3 N$
- Couramment utilisées dans traitement gaz naturel
- Méthyldiéthanolamine (MDEA) → Traitement de gaz naturel
- Diéthanolamine (DEA)
- Monoéthanolamine (MEA) → Captage du CO₂

Schéma classique

Procédé cyclique

Schéma classique

Procédé cyclique

Schéma classique

Procédé cyclique

P_{CO2}=0.01 bar T=40°C

fumées décarbonnées

à 90%

Absorbeur T=40℃

fumées après

P_{CO2}**=0.1** bar **T=**40°**C**

amine pauvre

amine riche

Ex. : MEA 30%wt

- E_{reg} = 3.7 GJ.t_{CO2}⁻¹
- Perte ¼ rendement centrale
- 0.6 t_{CO2} / t_{CO2} captée

CO₂ liquide

(110 bar)

W

Régénérateur T=120℃

Rebouille

vapeur BP

Energie de régénération

- Enthalpie de réaction (Δ_RH)
 Rompre la liaison chimique
- Chaleur sensible (Δα=α_R-α_L)
 Débit de solvant
- Stripping
 Excès de vapeur

- Thermodynamique
- **Equipement E.H.D.**

6 réacteurs

Injections automatisées $\Rightarrow P_{CO2} = f(\alpha)$

Isothermes d'absorption

- Validation équipement
 - MEA, DEA, MDEA

Mise en Production

- 12 isothermes / semaine
- 150 amines testées à ce jour

Isothermes d'absorption

- Equipement EHD
 - T → 20 100 °C
 - $P_{CO2} \rightarrow 20 \text{ mbar} 3 \text{ bar}$
 - α_R
 - $\alpha_L, \Delta_R H$?

Isothermes d'absorption

- Equipement EHD
 - T → 20 100 °C
 - $P_{CO2} \rightarrow 20 \text{ mbar} 3 \text{ bar}$
 - α_R
 - $\alpha_L, \Delta_R H$?

Modèle thermodynamique

Loi de Henry P_{CO2}=H.[CO2]

Isothermes d'absorption

- Equipement EHD
 - T → 20 100 °C
 - $P_{CO2} \rightarrow 20 \text{ mbar} 3 \text{ bar}$
 - α_{R}
 - α_L, Δ_RΗ ?

Modèle thermodynamique

- Loi de Henry P_{CO2}=H.[CO2]
- Loi d'action de masse (K_i)

Amines III

Isothermes d'absorption

- Equipement EHD
 - T → 20 100 °C
 - $P_{CO2} \rightarrow 20 \text{ mbar} 3 \text{ bar}$
 - α_{R}
 - α_L, Δ_RH ?

- Loi de Henry P_{CO2}=H.[CO2]
- Loi d'action de masse
- Modèle d'activité (a_i)
- $\bullet \Delta \alpha, \alpha_{\mathsf{R}}, \Delta_{\mathsf{R}} \mathsf{H}$

Isothermes d'absorption

- Equipement EHD
 - T → 20 100 °C
 - $P_{CO2} \rightarrow 20 \text{ mbar} 3 \text{ bar}$
 - α_R
 - α_L, Δ_RΗ ?

Modèle thermodynamique

Génération connaissance

Cibles

Screening de mono-amines

- 48 candidats testés
 - 30% wt
 - T= 40, 80 °C

Schéma PRO/II

- Interface modèle thermodynamique
- Simulation générique
- E_{reg} pour chacun des candidats

Relation phénoménologique

- - E_{reg} (procédé)
 - α_R , $\Delta \alpha$, Δ_R H (laboratoire)
 - Modèle $E_{reg} = f(\alpha_R, \Delta \alpha, \Delta_R H)$
 - $E_{reg} = A + B/\alpha_R + C/\Delta\alpha + D.\Delta_R H$
 - Détermination A, B, C, D

Relation phénoménologique

- Procédé ↔ Laboratoire
 - E_{reg} (procédé)
 - α_R , $\Delta \alpha$, Δ_R H (laboratoire)
 - Modèle $E_{reg} = f(\alpha_R, \Delta \alpha, \Delta_R H)$
 - $E_{reg} = A + B/\alpha_R + C/\Delta\alpha + D.\Delta_R H$
 - Détermination A, B, C, D

Performance limite

- M=130 g.mol⁻¹
- $\Delta \alpha = \alpha$
- E_{reg} = 2.8 GJ.t_{CO2}⁻¹
- Limite mono-amines
- Utilisation multiamines

QSAR

Quantitative Structure Activity Relationship

- Propriété physique Φ
- Postulat $\Phi = F(C)$; C=constitution chimique de la molécule
- F linéaire (polynôme) ou non linéaire (réseaux de neurones)

Graph Machines

- Développée par ESPCI puis IFP Energies nouvelles
- Descripteur = formule semi-développée de la molécule

Etiquettes

C,2

C,2

N,1

Absorption aux amines

Exemple GM

Construction graph

Transformation noeuds **Noeud central**

Graph orientés

Exemples GM

Fonctions f_θ (ex.: Réseaux de neurones)

Mise en œuvre GM

- Phase I : Apprentissage
 - Constitution d'une base d'apprentissage

 - Construction des fonctions F_θⁱ pour les N molécules
 - Identification $F_{\theta} = \Phi$
 - Calibration des θ pour N molécules apprises

Phase II : Validation / Prédiction

- Identification meilleurs candidats

Modélisation pKa

- 48 mono-amines
 - 38 molécules : apprentissage

Réseau de neurones 3N

Modélisation pKa

- 48 mono-amines
 - **38** molécules : apprentissage
 - 10 molécules : validation

Réseau de neurones 3N

Prédiction pKa Amines III

Amines III

Modélisation pKa

 $E_{reg} = 3.0 \ GJ.t_{CO2}^{-1}$

Meilleure mono-amine testée

Conclusions

Captage CO₂

- Développement méthodologie EHD
- Estimation du potentiel des mono-amines dans le procédé TSA
- Optimisation des solvants par modélisation statistique
- Collaboration transverse
 - Séparation
 - Thermodynamique
 - Génie des procédés
 - Mathématiques appliquées

Extension multi-amines via thèse

Captage du CO₂

Exemple GM

3-amino-propan-1-ol

- **Fonction** f_{θ}
- Réseaux de neurones

$f_{\theta}(0,0,0,1)$

Exemple GM

3-amino-propan-1-ol

- **Fonction** f_{θ}
- Réseaux de neurones

$f_{\theta}(f_{\theta}(0,0,0,1),0,C,2)$

Exemple GM

- 3-amino-propan-1-ol
 - **Fonction** f_{θ}
 - Réseaux de neurones

 $f_{\theta}(f_{\theta}(0,0,0,1),0,C,2) f_{\theta}(f_{\theta}(0,0,N,1),0,C,2)$

Exemple GM

3-amino-propan-1-ol

- **Fonction** f_{θ}
- Ex.: f_{θ} = Réseaux de neurones

 $F_{\theta} = f_{\theta}(f_{\theta}(f_{\theta}(0,0,0,1),0,C,2), f_{\theta}(f_{\theta}(0,0,N,1),0,C,2),C,2))$