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Hydrates, Flow Assurance & Phase Equilibria Research Group

• Background
PVT and Phase Behaviour of Petroleum Reservoir– PVT and Phase Behaviour of Petroleum Reservoir 
Fluids research started in 1978

– Gas hydrate research started in 1986y
– Centre for Gas Hydrate Research Established in Feb 

2001
C f Fl A R h (C FAR) d i– Centre for Flow Assurance Research (C-FAR) started in 
2007

A f A ti iti• Areas of Activities
– Research

Consultancy– Consultancy
– Training (open and in-house courses)
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Hydrates, Flow Assurance & Phase Equilibria Research Group

Research Interests
PVT d Ph B h i f R i Fl id d CO• PVT and Phase Behaviour of Reservoir Fluids and CO2-
Rich Systems

• Flow Assurance
– Gas Hydrates

W– Wax
– Salt (halite)
– AsphalteneAsphaltene

• Gas Hydrates
Flow Assurance– Flow Assurance

– Gas Hydrates in Sediments
– Positive/other Applications of Gas Hydrates
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What are gas hydrates ?

• Gas hydrates or clathrate

 

• Gas hydrates or clathrate
hydrates are:
– Ice-like crystalline– Ice-like crystalline 

compounds
– Composed of water + gas Co posed o a e gas

(e.g. methane, CO2)
– Formed under low 

temperatures and elevated 
pressures
St bl ll b th i– Stable well above the ice-
point of water Methane hydrate: the 

b i b ll
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Hydrate Structures and Stability Zone

Th diti• The necessary conditions:
– Presence of water or ice
– Suitably sized gas/liquid– Suitably sized gas/liquid 

molecules (such as C1, C2, C3, 
C4, CO2, N2, H2S, etc.)
S

P
– Suitable temperature and 

pressure conditions

• T and P conditions is a function
Hydrates

• T and P conditions is a function 
of gas/liquid and water 
compositions.

No Hydrates

• Can form anywhere that the 
above conditions are met Hydrate phase boundary

T
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Gas Hydrate Formation

• Not necessary:
–Presence of a gas phase
–Presence of a free water phasep
–Very low temperature conditions

V hi h diti–Very high pressure conditions
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Gas Hydrate Formation

• The extent of hydrate formation and the 
resulting problems depends on:resulting problems depends on:

– The amount of water and hydrate forming e a ou o a e a d yd a e o g
compounds

– Pressure and temperature conditionsp
– Amount of thermodynamic or kinetic inhibitors
– Presence of natural inhibitors
– Other factors, such as, growth modifiers, local 

restriction, fluid type, pipe wall characteristics, 
etc.
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Where Can They Form?

• They can form anywhere, such as:

– Pipelines (offshore and onshore)
– Processing facilities (separators, valves, etc)
– Heat exchangers
– Sediments (permafrost regions and subsea 

sediments)
Offshore drilling operations– Offshore drilling operations

– Etc
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Interesting Properties

– Capture large amounts of gas (up to 15 mole%)
Remove light components from oil and gas– Remove light components from oil and gas

– Form at temperatures well above 0 °C
– Generally lighter than watery g
– Need relatively large latent heat to decompose
– Non-stochiometric
– More than 85 mole% water in their structure
– Exclude salts and other impurities

Result from physical combination of water and gas– Result from physical combination of water and gas
– Hydrate composition is different from the HC phase
– Large amounts of methane hydrates exist in natureg y
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Hydrate Structures

2 Methane, ethane, 
carbon dioxide….

6 Structure 1

51262

16 8 Structure 2

51262

3

Propane, iso-butane, 
natural gas….

51264512

+
P T and 3

2 1 Structure H

512645
suitable 
guests

2
Methane + neohexane, 
methane + mch….

1 Structure H
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Hydrate former in Natural Gas

• Methane
I f– sI former

– Both small and large cages of SI

• Ethane 
– sI former
– Only large cages of SI

• PropanePropane 
– sII former
– Only large cages of SIIOnly large cages of SII
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Hydrate Formers in Natural Gas

• i-butane
– sII former
– Only large cages of sII

• n-butane
– Does not form hydrate on its own

F i th f th– Form in the presence of another 
hydrate former, i.e. methane

– Only large cages of sIIOnly large cages of sII

• Cyclo-propane 
– sI or sII former depending on T and P– sI or sII former depending on T and P
– Only large cages

SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014



Hydrate Formers in Natural Gas: Non 
Hydrocarbons

• Nitrogen
– sII former
– Small and large cages of sII

• Carbon dioxide
– sI former
– Only large cages of sI

• Hydrogen Sulphide• Hydrogen Sulphide
– sI former

Small and large cages– Small and large cages
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Other Hydrate Formers

• Freons

• Halogens (fluorine and chlorine)

• Noble gases (argon krypton xenon radon not• Noble gases (argon, krypton, xenon, radon  not 
helium)

Very stable compound →good indication that no– Very stable compound →good indication that no 
chemical bonding exist between the host and the guest

Ai (N O )• Air (N2 + O2)

• SO2 (very soluble in water) and small mercaptans2 ( y ) p
(methanethiol, ethanthiol and propanethiol)
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Avoiding Hydrate Problems - Current practice

• Increasing the system temperature
- InsulationInsulation
- Heating

• Reducing the system pressure
Hydrates

Wellhead 
conditionsHydrates
Wellhead 
conditionsHydrates
Wellhead 
conditionsHydrates
Wellhead 
conditions

• Injection of thermodynamic inhibitors
- Methanol, ethylene glycol, ethanol PPPP

• Using Low Dosage Hydrate Inhibitors
- Kinetic Inhibitors (KHI)
- Anti-Aggglomerants (AA)

No HydratesNo HydratesNo HydratesNo Hydrates
ggg ( )

• Water removal (dehydratation)
• Combinations of the aboveCombinations of the above

• New Approach: Cold Flow
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Flow Assurance- Hydrates: The problems

• Hydrate blockages are major flow assurance
problems in offshore and deep waterp p
operations.

• Currently the most common flow assurance
t t i t l i j ti f i hibitstrategy is to rely upon injection of inhibitors

in order to inhibit hydrate formation.

• It is crucial for accurate knowledge ofIt is crucial for accurate knowledge of
hydrate phase equilibrium in the presence of
inhibitors to avoid gas hydrate formation
problems

G h d t d f

problems.

• Lack of experimental data, especially for real
reservoir fluids.

Gas hydrates removed from 
a subsea transfer line 

(Courtesy of Petrobras)
• Capability to accurately predict the hydrate 

stability zone is therefore essential to plan 
potential flow assurance issues
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Thermodynamic Modelling

Thermodynamic Modelling• For VLE or VHE, we have:

CPA E S

LV ff  or HV ff 
• CPA EoS:
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Thermodynamic Modelling

• For Hydrate: 
Solid solution theory of van der Waals and PlatteeuwSolid solution theory of van der Waals and Platteeuw
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• Modeling of electrolyte solutions:

  






m j
jmjmwww fCvRT 1lnwhere

Combining the EoS with the Debye Hückel electrostatic contribution 
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Thermodynamic Modelling

• BIPs between self-associating compounds using solubility data:
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• methane-water:
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Thermodynamic Modelling
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Thermodynamic Modelling

• BIPs between cross-associating compounds (e.g. water-
methanol and water-MEG) adjusted using VLE (bubble and 
dew point data) or SLE (freezing point depression data) :
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Thermodynamic Modelling

• SLE for water-methanol: • SLE for water-MEG:
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Thermodynamic Modelling
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Avoiding Hydrate Problems - Current practice

• Increasing the system temperature
- InsulationInsulation
- Heating

• Reducing the system pressure

• Injection of thermodynamic inhibitors
- Methanol, ethylene glycol, ethanol

• Using Low Dosage Hydrate Inhibitors
- Kinetic Inhibitors (KHI)
Anti Aggglomerants (AA)- Anti-Aggglomerants (AA)

• Water removal (dehydratation)

C bi ti f th b• Combinations of the above

• New Approach: Cold Flow
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Experimental Equipment

M t i l• Materials:
– Distilled water

North Sea natural gas– North Sea natural gas
– Inhibitors

• Equipments:• Equipments:
– Autoclave cells 
– V = 300 to 2000 ml
– Max P = 400 – 2000 bar
– -80 < T < 50 oC 
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Typical Experimental Procedures

• Cell loaded with starting fluids at T = 20 C or higher
D di i l– Depending on experiment: water  ± salts  ±
Thermodynamic inhibitor (MEG, methanol)
Headspace left for further fluid injections: gas (G)– Headspace left for further fluid injections: gas (G), 
live oil… 

• To form hydrates temperature reduced their presence• To form hydrates, temperature reduced, their presence 
being confirmed by pressure drop

• Hydrate dissociation point is found by stepwise increase• Hydrate dissociation point is found by stepwise increase 
of T 
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Hydrates: Experimental Methods
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