HSZ in The Presence of Organic Inhibitor

 Predicted hydrate dissociation conditions (structure II) for a North Sea natural gas in with the presence of methanol aqueous solutions.

O: data from HWU.

CENTRE

HSZ in The Presence of Organic Inhibitor

 Predicted hydrate dissociation conditions (structure II) for a North Sea natural gas in with the presence of MEG aqueous solutions.

- •: Haghighi et al., 2009.
- O: data from HWU.

SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 🧏

HSZ in The Presence of Mixture of Inhibitors

 Predicted natural hydrate dissociation conditions in the presence of 10 mass% of NaCI (
) and 30 mass% MEG and 5 mass% NaCI (
).

Experimental data from HWU.

CENTRE

Inhibitor Distribution in Multiphase Systems

 Predicted methanol content in the gas and liquid hydrocarbon phases of a synthetic gas-condensate at 69 bar / 1000 psia bar in the presence of 35 and 70 mass% methanol aqueous solutions.

SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 🔧

CENTRE FOR GAS

HSZ of Oil/Condensate in the Presence of Inhibitors

 predicted hydrate dissociation conditions and phase envelope for a gas condensate well-stream in presence of methanol aqueous solutions.

Experimental data from Ng et al., 1985.

CENTRE

HSZ of Oil/Condensate in the Presence of Inhibitors

 predicted hydrate dissociation conditions and phase envelope for a gas condensate well-stream in presence of MEG aqueous solutions.

Experimental data from Ng et al., 1985.

CENTRE

Avoiding Hydrate Problems - Current practice

- Increasing the system temperature
 - Insulation
 - Heating
- Reducing the system pressure
- Injection of thermodynamic inhibitors
 Methanol, ethylene glycol, ethanol
- Using Low Dosage Hydrate Inhibitors
 - Kinetic Inhibitors (KHI)
 - Anti-Aggglomerants (ÁA)
- Water removal (dehydratation)
- Combinations of the above
- New Approach: Cold Flow

SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 🤘

Water Content Measurements

Experimental setup

SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 🤘

Water Content Measurements

 Schematic of the SpectraSensorsTM SS2000 TDLAS set-up
 Main Characteristics:

SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014

• Predicted water content (ppm mole) of methane in equilibrium with liquid water or hydrate at 68.9 bar.

SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 😾

Experimental Conditions

SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 😾

HYDRAT

• Experimental and predicted water content (ppm mole) of a synthetic gas in equilibrium with hydrate.

SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 😾

Example: Real Case

Component(s)	Mole Fraction
Methane	0.851359
Ethane	0.067004
Propane	0.044403
i-Butane	0.0063
n-Butane	0.010701
i-Pentane	0.0028
CO2	0.007
Nitrogen	0.0017
n-Pentane	0.0022
C6	0.001893
C7	0.002143
C8	0.00212
C9	2.72E-04
C10	8.50E-05
C11+	2.00E-05

Conclusions - Perspectives

- The Cubic-Plus-Association (CPA) EoS has been applied to multiphase equilibria in mixtures containing water, methanol, ethanol, and MEG in the presence or absence or salts.
- Good agreement between model prediction in challenging hydrates calculations and experimental results:
 - o gas hydrate in low water content gases
 - o HSZ of oil/condensate in the presence of produced water and inhibitors
 - HSZ in the presence of high concentration of inhibitor(s) or salt(s)
 - o prediction of hydrate inhibitor distribution in multiphase systems

SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014

Acknowledgements

 This work was part of 2 Joint Industry Projects funded by Petrobras, Statoil and TOTAL, whose support is gratefully acknowledged

CENTRE FOR GAS

SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014