

LABORATOIRE DE GÉNIE DES PROCÉDÉS

MICROBIOLOGIQUES ET ALIMENTAIRES (GPMA)

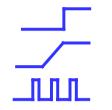
Université de Bourgogne / AgroSup Dijon IFR 92

- Équipe rattachée à la DSPT8 (Sciences pour l'Ingénieur)
- 2007 : Création par le **regroupement** d'un laboratoire du domaine des **procédés** (EA 1687 GPAB) (7 EC) et d'une partie (4 EC) d'une unité mixte de recherche en **microbiologie/enzymologie** (UMR INRA/uB Microbiologie 1232).
- L'équipe comprend aujourd'hui 13 EC dont 8 HDR
- L'équipe est répartie sur **2 sites proches** : **AgroSup Dijon Nord** (3 niveaux) qui accueillent 12 EC et 2 IATOS et la **Plateforme de Prédéveloppement en Biotechnologie (PPB)** située dans le centre INRA de Dijon et qui accueille 1 EC et 1 IATOS.

Objectifs et stratégie

Étude des réponses microbiennes à l'application de perturbations physiques et chimiques de cinétiques variables

Cellules



Cellules étudiées

- Levures
- Champignons filamenteux
- Bactéries
- Spores bactériennes
- Cellules humaines
- Liposomes

Variables d'entrée

Nature de la variation

- Température (froid / chaud)
- Pression (→6000 bars)
- Hydratation
- Éthanol, acides phénols, arômes,...
- Potentiel Redox

Réponses étudiées

- Réponses passives (physiques)
- Structure et fluidité membranaire
- Volume cellulaire
- Réponses actives (biologiques)
- Transcriptome, Protéome, métabolism
 Viabilité, croissance

Analyses effectuées

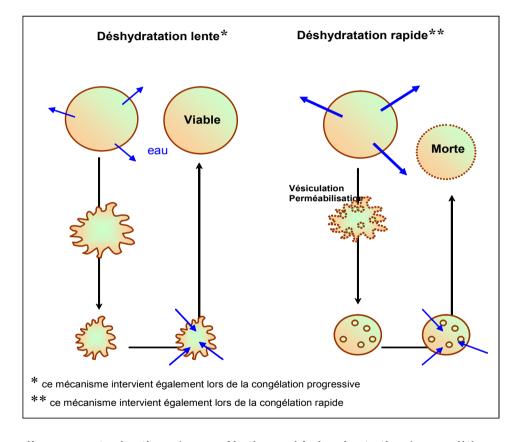
- Microscopie confocale et spectrale
- Spectrophotométrie (IRTF, Fluorescence
- Génétique inverse, mutagenèse par transposition, délétion et expression de gènes
- Biochimie des mécanismes de régulation

Comprendre les mécanismes à l'origine de l'adaptation ou de la mort de différents types de cellules...

- végétatives,
- sèches, spores
- ... et les rôles respectifs :
 - du changement d'état de la membrane,
 - de la dénaturation des protéines,
 - de l'expression des gènes,
 - de la synthèse des protéines

Améliorer les procédés de fermentation, de conservation ou de destruction des microorganismes :

- déshydratation de levures et des bactéries,
- congélation de cellules d'intérêt,
- pasteurisation à faible température,
- production de molécules d'intérêt (arôme, enzymes),
- décontamination des poudres

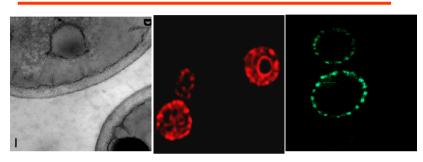

- Réponses physiques aux perturbations environnementales extrêmes
 Exemple de mécanismes membranaires impliqués dans la survie à la déshydratation congélation
- Réponses génétique et physiologique des microorganismes à différentes perturbations environnementales
 - ☐ Exemple de mécanismes cytoplasmiques impliqués dans la réponse acide
- Réponses à des perturbations couplées (HP/T, Hydratation/redox, Hydratation/T)

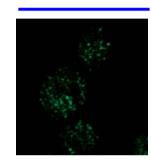
Réponses physiques aux perturbations environnementales extrêmes : Mécanismes membranaires impliqués

 Influence de la cinétique de déshydratation (ou de congélation) sur l'évolution de la structure membranaire et de la viabilité cellulaires

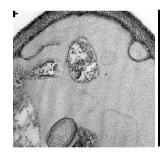
- La vitesse d'application d'une perturbation (congélation, déshydratation) conditionne la survie cellulaire
- La membrane plasmique est une structure sensible à la cinétique d'application de ces perturbations

Réponses physiques aux perturbations environnementales extrêmes : Mécanismes membranaires impliqués



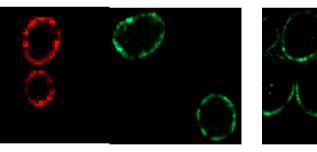

 La vitesse de déshydratation conditionne l'évolution structurale de la membrane plasmique

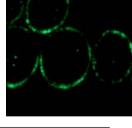
État déshydraté


Réhydraté

Perturbation rapide

Perturbation lente




Ultrastructure

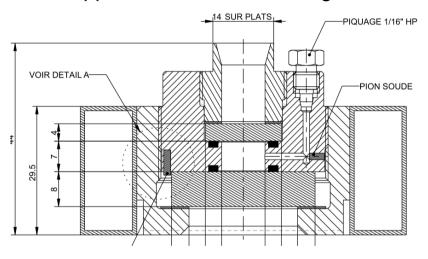
MET

Localisation mb

Confocale + Sonde
fluo. FM 4-64

Protéine membranaire

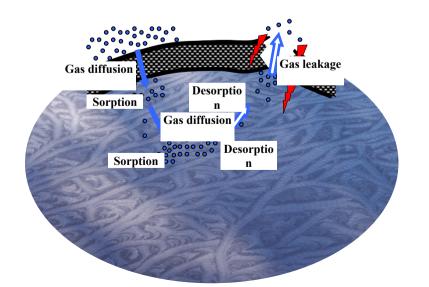
Confocale + Construction GFP


- Influence des perturbations environnementales sur la structure membranaire (adaptation passive)
- Rôle des microdomaines membranaires dans la résistance aux perturbations (stérols)
- Nouvelles voies d'internalisation passive de molécules dans les cellules

Réponses physiques aux perturbations environnementales extrêmes : Effet des hautes pressions

Développement de réacteurs originaux : milieux liquides et gaz

- Pression maximum : 400 MPa, Volume 1 ml
- O Compatible objectif x100, confocal,
- O Détente rapide...


Réponses physiques aux perturbations environnementales extrêmes : Effet des hautes pressions

Temps

- Compréhension des mécanismes de destruction cellulaire
 - En milieu liquide :
 - Compression du cytoplasme (eau = compressible)
 - Perméabilisation des cellules sous pression
 variation de volume

Limite: Les microorganismes secs ne sont pas détruits

En milieu gaz :

Pression

MPa

La détente de gaz comprimé permet de **détruire** les microorganismes secs y compris les spores

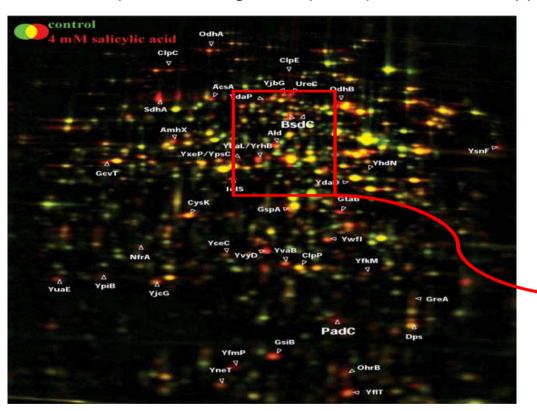
Perturbation =

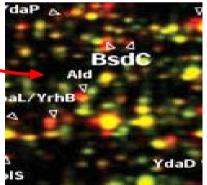
F(temps, compression cellulaire)

- Les mécanismes identifiés sont liés aux cinétiques de sorption et de désorption du gaz
- Application : Stérilisation des épices

Réponses physiques aux perturbations environnementales extrêmes : Effet des hautes pressions

Travaux en cours

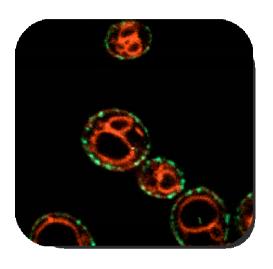

- Utilisation combinée HP et froid pour la préservation de cellules et de tissus
 Grace à l'utilisation de températures inferieures à 0°C sans cristallisation de l'eau
- Recherche de microorganismes barophiles présents sous forme dormante dans d'anciens sols marins
- Utilisation de la pression comme outil de compréhension de la structure de la spore bactérienne


Réponses génétique et physiologique des microorganismes à des perturbations environnementales

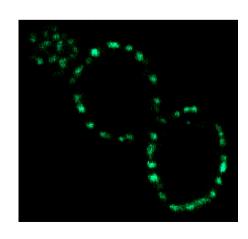
Expression de gènes spécifiques au stress appliqué : acides phénols

Électrophorèse bidimensionnelle des protéines cytoplasmiques de *B. subtilis 168* avant (spots verts) et après (spots rouges) exposition des cellules à 4mM d'acide salicylique (concentration inhibitrice de la croissance). L'effet de l'acide salicylique se traduit par la surexpression de nombreuses protéines. On peut distinguer certains acides phénol décarboxylases (*PadC* et *BsdC*) qui interviennent dans les processus de décarboxylation et de détoxification.

- Mécanismes d'adaptation et de résistance
- Maîtrise de voies de régulation de la réponse génétique


Van Duy Nguyen., Mäder U, <u>Tran N.P.</u>, <u>Cavin J.-F.</u>, Le T.H., Albrecht D., Hecker M., Antelmann H., 2007. The proteome and transcriptome analysis of *Bacillus subtilis* in response to salicylic acid. *Proteomics*, <u>7</u>(5), 698-710

Plateau Imagerie Spectroscopique


Un outil de pointe créé et hébergé par GPMA

- 1 ingénieur
- Microscopie confocale spectrale
- Spectroscopie infra-rouge
- Spectroscopie de fluorescence
- Micromanipulation
- Micro-réacteurs (HP, T, mélangeurs)

- Application de perturbations ciblées dans le micro-environnement cellulaire
- Analyse locale de la structure cellulaire
- Étude de la dynamique des structures cellulaires

GPMA: Production 2006-2010

	Produits	Nombre
Qualité scientifique et production	Publications de « rang A »	81
	Publications dans des revues dont le facteur d'impact	46
	est dans le premier quartile de ceux la discipline	
	Facteur d'impact moyen des publications	2,81
	Nombre de Publications par an et par chercheur (13 enseignants-chercheurs=6.5 ETP)	3,11
	Chapitres d'ouvrages	9
	Brevets	3
	Conférences invitées à des congrès internationaux	5
	Communications lors de congrès internationaux:	
	Orales avec actes/sans acte	16/11
	Nombre de thèses soutenues/ en cours	21/10
Rayonnement Attractivité	WP de projets européens coordonnés par l'unité	2
	Programmes ANR coordonnés par l'équipe	2
	Accueil de Post-Doctorant	5
	Accueil de chercheurs étrangers	2
	Experts PEDR/PES	2
	Nombre de publications intégrant des collaborations internationales	26
Partenariats socioéconomiques	Articles dans des revues techniques ou professionnelles	5
	Thèses CIFRE terminées/en cours	2/2
	Thèses industrielles en cours co-financées par des partenaires socioéconomiques.	2
	Participations à des programmes FUI en lien avec des pôles de compétitivité	2
	Participation de membres de l'unité dans la gouvernance et les conseils (Vitagora, Welience,)	3

Perspectives : équipe PMB (2012)

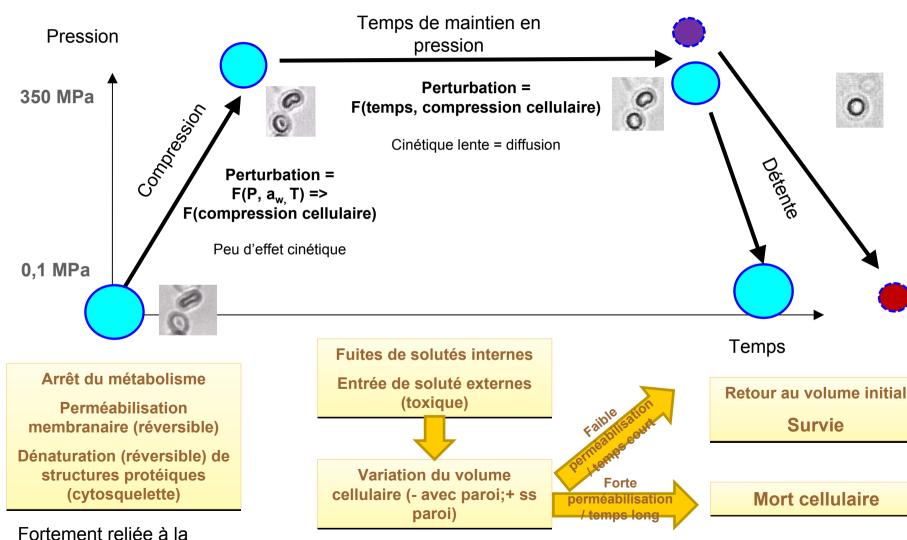
Compréhension des mécanismes des réponses cellulaires (réponses passives et adaptatives) à différents types de stress environnementaux

- Multidisciplinarité
 - Génie des Procédés
 - Biologie cellulaire et moléculaire

- Thème 1 : Comprendre et modéliser les effets de différents stress sur des cellules microbiennes
 - Approfondir les connaissances sur les stress simples et leur régulation
 - Étudier l'effet de stress combinés
 - Comprendre les mécanismes impliqués dans la réponse de la membrane plasmique
- Thème 2: Comprendre les mécanismes cellulaires de résistance et de développement en conditions extrêmes
 - La spore bactérienne
 - Les piézophiles et les piézotolérants

Microbiologiques (PAM) Projet 2012

 Unité mixte de recherche AgroSup Dijon / Université de Bourgogne qui sera gérée par AgroSup Dijon


- Composée de 3 équipes
 - Procédés Microbiologiques et Biotechnologiques (PMB: ex GPMA)
 - Vin Aliments- Microorganismes Stress (VALMIS: ex ReVV)
 - Procédés Alimentaires et PhysicoChimie (PAPC: ex EMMA)
- 38 Enseignants Chercheurs / 9 Ingénieurs et techniciens / 25 30 doctorants (45 ETP)
 - 5 sections du CNU : 62, 64, 65, 68 et 39
- 1 projet scientifique commun (à côté des programmes spécifiques à chaque équipe):
- « Etude des mécanismes induits par des perturbations environnementales sur l'activité et la fonctionnalité de systèmes macromoléculaires et de microorganismes »
 - Axe 1 : Nature, fonction et dynamique des réponses des microorganismes aux perturbations environnementales (environ 15 ETP)
 - Axe 2 : Eau et fonctionnalité des systèmes biologiques (environ 12 ETP)
 - Axe 3 : Structuration de matrices et vectorisation (environ 11 ETP).

compressibilité cellulaire

Effets des hautes pressions en milieu liquide

