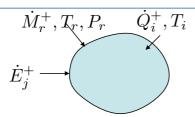


Francois Marechal

Exergy analysis and process design

De l'utilisation de l'exergie pour optimiser le design des procédés

Prof François Marechal Industrial Process and Energy Systems Engineering Ecole Polytechnique Fédérale de Lausanne EPFL Valais-Wallis


Content

- What is exergy ?
- Exergy efficiency of a process
- Analysing process unit operations & interconnectivity
- Process integration & exergy
- Process design & exergy
- Conclusions

François Marechal

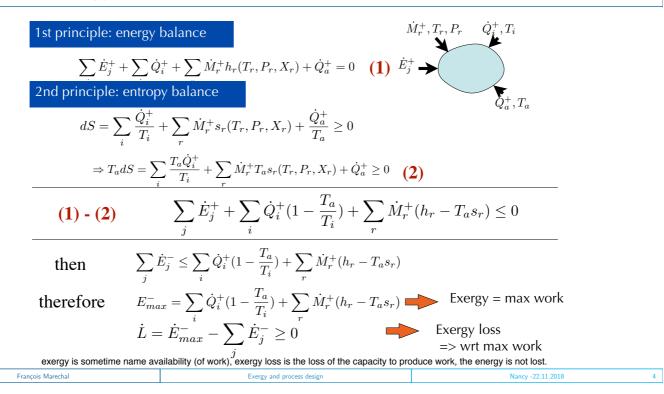
Nancy - 22.11.2018

Open system : without accumulation : Energy and entropy balances

Nothing is lost - nothing is created, everything is transformed

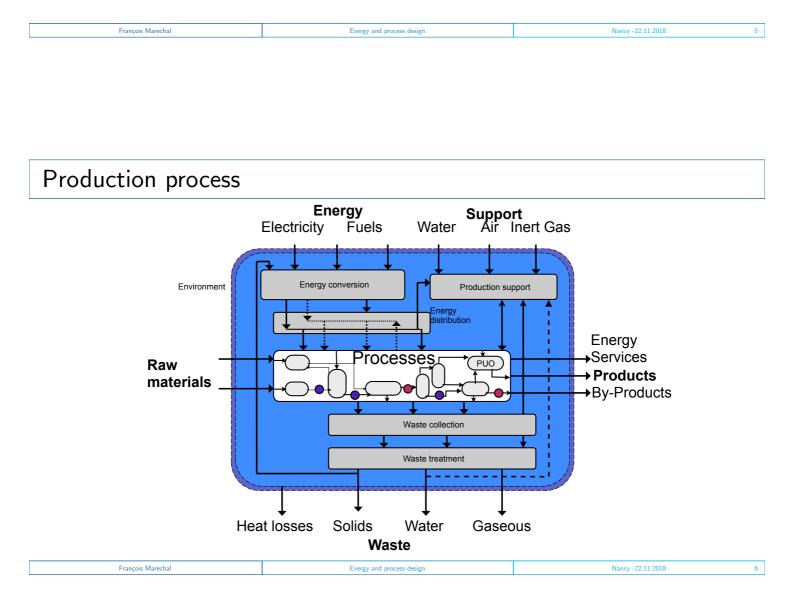
$$\sum_{j} \dot{E}_{j}^{+} + \sum_{i} \dot{Q}_{i}^{+} + \sum_{r} \dot{M}_{r}^{+} h_{r}(T_{r}, P_{r}, X_{r}) = 0$$

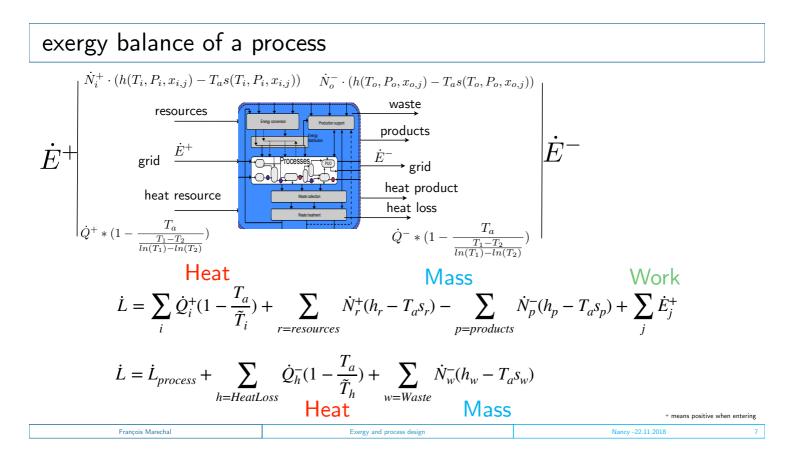
Second principle: entropy balance


First principle: energy balance

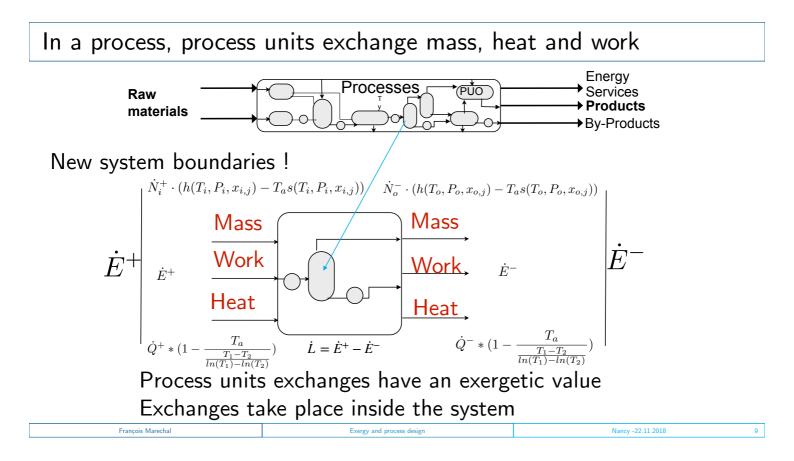
The entropy of an isolated system tends to increase

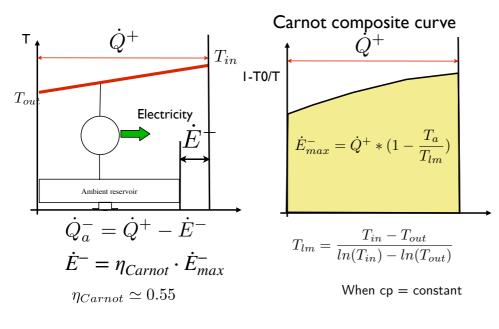
$$dS = \sum_{i} \frac{Q_{i}^{+}}{T_{i}} + \sum_{r} \dot{M}_{r}^{+} s_{r}(T_{r}, P_{r}, X_{r}) \ge 0$$



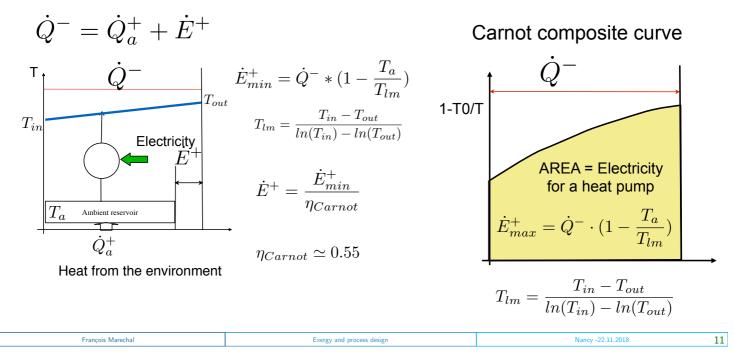

Notion of exergy

Definition of exergy

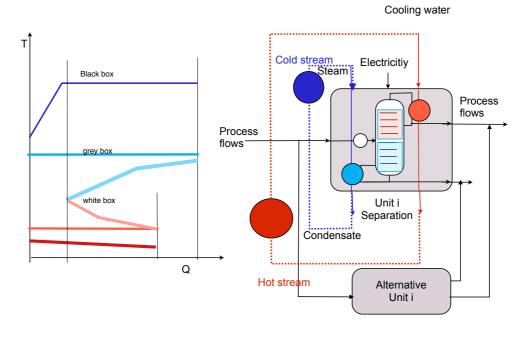

The exergy is the amount of work that can be produced by converting any thermodynamic states by using reversible transformations that exchange only with the ambiant conditions (Ta, Xi, P)


Exergetic efficiency of a process $\eta = \frac{\dot{E}^{-}(delivered)}{\dot{E}^{+}(consumed)} = \frac{\dot{E}^{+} - \dot{L}}{\dot{E}^{+}} = 1 - \frac{\dot{L}}{\dot{E}^{+}}$ $\dot{\mu} + \dot{\mu} + \dot$

Losses = Exergy in - Exergy out (i.e. used)

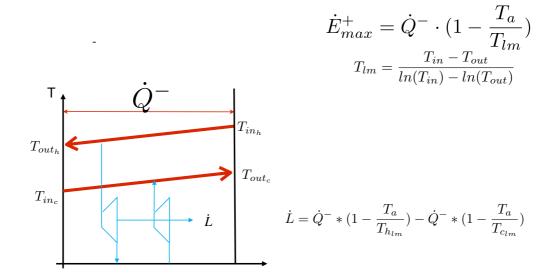

The exergy value of a hot stream (heat delivery)

Above the ambiance, a hot stream delivers exergy and balances with the environment



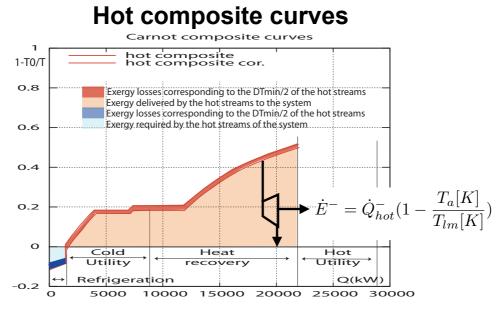
The exergy value of a cold stream : heat consumption

above the ambience : A cold stream requires exergy and balances with the environment



Defining Unit Operation heat exchange interfaces

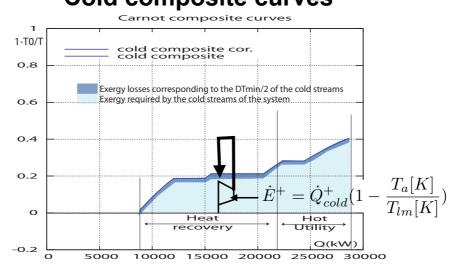
 François Marechal
 Exergy and process design
 Nancy -22.11.2018
 12


Heat recovery and exergy

The exergy lost in the heat exchanger is the amount of work that can not be produced any more (lost) when the heat exchange is realised. It corresponds to the power that could be produced if one installs an infinite number of perfect Rankine cycles between the hot and the cold streams of the heat exchanger

François Marechal	Exergy and process design	Nancy -22.11.2018	13

Carnot composite curves of a process

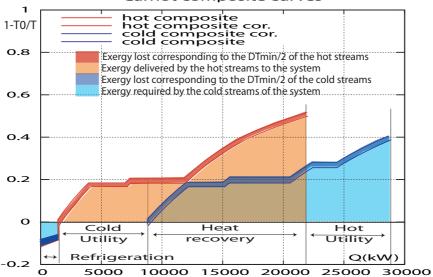


This is the exergy made available by all the hot streams in the

Marechal, François, and Daniel Favrat. "Combined exergy and pinch analysis for the optimal integration of energy conversion technologies." 18th International conference on efficiency, cost, optimization, simulation and environmental impact of energy systems. 2005.

,			
François Marechal	Exergy and process design	Nancy -22.11.2018	14

Carnot composite curves of the process



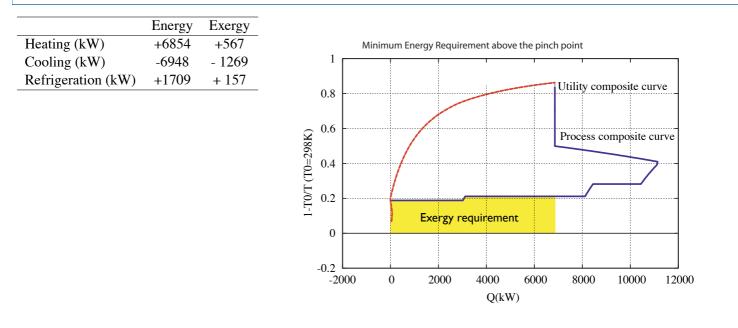
Cold composite curves

Marechal, François, and Daniel Favrat. "Combined exergy and pinch analysis for the optimal integration of energy conversion technologies." 18th International conference on efficiency, cost, optimization, simulation and environmental impact of energy systems, 2005.

François Marechal	Exergy and process design	Nancy -22.11.2018 15	ō
	-		_

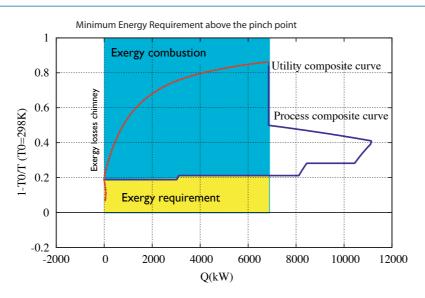
Carnot composite curves and heat recovery

Carnot composite curves

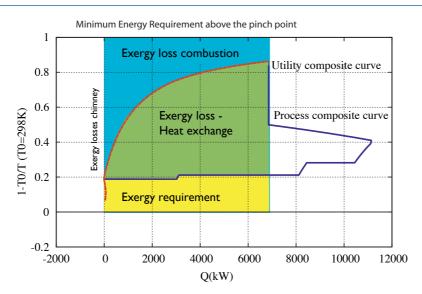

Marechal, François, and Daniel Favrat. "Combined exergy and pinch analysis for the optimal integration of energy conversion technologies." 18th International conference on efficiency, cost, optimization, simulation and environmental impact of energy systems. 2005.

	, , ,		
François Marechal	Exergy and process design	Nancy -22.11.2018	16

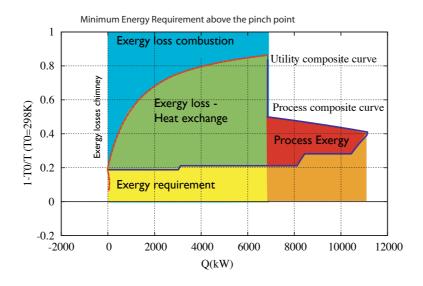
Exergy value of the heat transfer in the process


20291.0 1709.0 20197.0 0.0	Total 5521.4 131.5 4599.3 0.0	$\begin{array}{c c} \Delta T_{min} corrected \\ \hline 5352.4 \\ 151.2 \\ - \\ 4650.1 \\ \hline 0.0 \end{array}$	$ \begin{array}{c} \dot{E}q_{hot_a} \\ \dot{E}q_{hot_r} \\ \dot{E}q_{cold_a} \\ \dot{E}q_{cold_r} \end{array} $		Carnot composite curves hot composite corr cold composite corr corr corr cold composite
1709.0 20197.0 0.0	131.5 4599.3	151.2 4650.1 0.0	$\dot{E}q_{hot_r} \\ \dot{E}q_{cold_a}$		Copild
20197.0 0.0	4599.3	4650.1 - 0.0	$\dot{E}q_{cold_a}$	c	0 Reny required by the cold streams of the system 0 Cold
0.0		- 0.0 -			0.2 0 Cold Heat Ho
	0.0		$\dot{E}q_{cold_r}$		Cold Heat Ho
_					Utility recovery Utili
		381.2		-0	0.2 → Refrigeration C
1803.0	+790.0	+409.0			
					600
	Energy	Exergy			550 Hot Utility :6854 kW
W)	+6854	+567			500 PPCKet
W)	-6948	- 1269		T(K)	400
on (kW)	+1709	+ 157			350
			chnologies."		300 Cold utility:6948 kW Ambient temperation 250 2000 4000 6000 8000 10000 Q(kW) 0 0000 10000 10000
	W) W) on (kW) d pinch analysis 1	Energy W) +6854 W) -6948 on (kW) +1709 d pinch analysis for the optimal inte	EnergyExergyW)+6854+567W)-6948- 1269on (kW)+1709+ 157	$\begin{array}{ c c c c c c }\hline Energy & Exergy \\\hline \hline \hline$	Energy Exergy W) +6854 +567 W) -6948 - 1269 on (kW) +1709 + 157 d pinch analysis for the optimal integration of energy conversion technologies." , simulation and environmental impact of energy systems. 2005.

Exergy requirement above the pinch

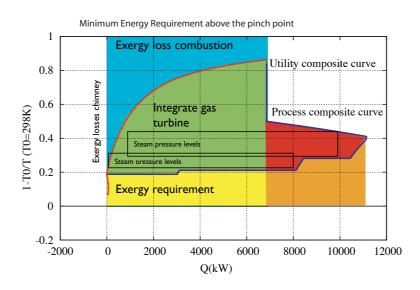

François Marechal

Exergy by combustion



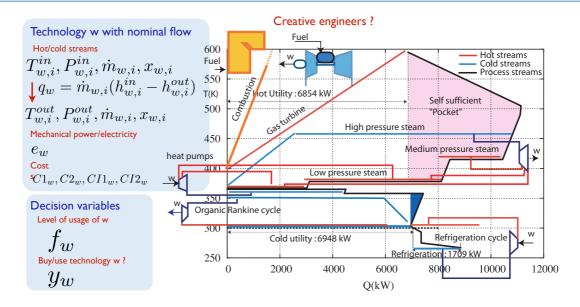
François Marechal Exergy and process design Nancy -22.11.2018	19

Exergy composite Heat exchange losses



Carnot composite -self-sufficient pockets

Even de la constante de la constant				
François Marechai Exergy and process design Nancy -22.11.2016	21	Nancy -22.11.2018	Exergy and process design	François Marechal


Carnot composite - suggestions to convert the exergy

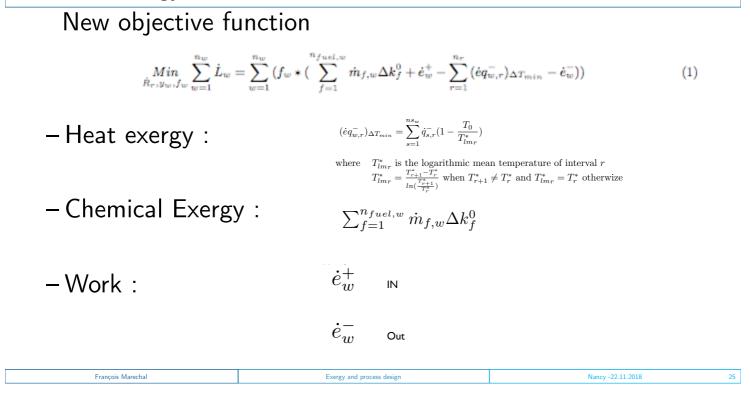
What is the best way to close the energy balance with the energy resources that we buy ?

François Marechal	
-------------------	--

Integration of the energy conversion system

Energy conversion units with unknown flowrates

François Marechal	Exergy and process design	Nancy -22.11.2018	23

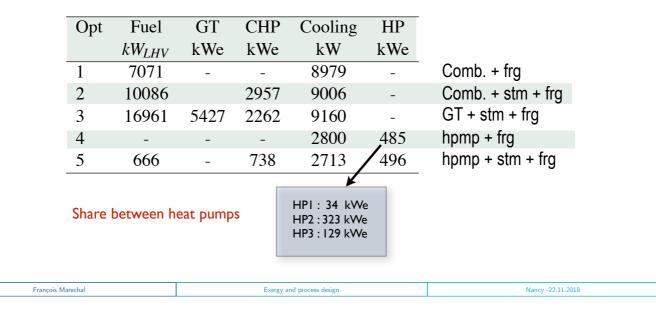

Mixed integer linear programming formulation of the process integration

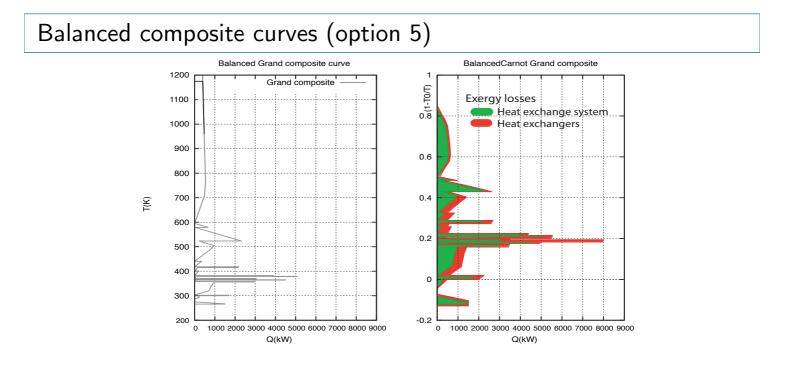
$$\begin{split} \min_{\substack{R_r, y_w, f_w, E^+, E^- \\ W=1}} & (\sum_{w=1}^{n_w} C2_w f_w + C_{el} + E^+ - C_{el} - E^-) * t \\ \text{Fixed maintenance} & \sum_{w=1}^{n_w} C1_w y_w + \frac{1}{r} (\sum_{w=1}^{n_w} C1_w y_w + C12_w f_w) \\ \text{Subject to : Heat cascade constraints} & \sum_{w=1}^{n_w} f_w q_{w,r} + \sum_{s=1}^{n_s} Q_{s,r} + R_{r+1} - R_r = 0 \\ & \sum_{w=1}^{n_w} f_w q_{w,r} + \sum_{s=1}^{n_s} Q_{s,r} + R_{r+1} - R_r = 0 \\ \text{Feasibility} & R_r \ge 0 \quad \forall r = 1, \dots, n_r; R_{n_{r+1}} = 0; R_1 = 0 \\ & E^+ \ge 0; E^- \ge 0 \\ & E\text{lectricity consumption} \\ & \sum_{w=1}^{n_w} f_w e_w + E^+ - E_c \ge 0 \\ & \sum_{w=1}^{n_w} f_w e_w + E^+ - E_c - E^- = 0 \\ & \text{Energy conversion Technology selection} \\ & fmin_w y_w \le f_w \le fmax_w y_w \\ & y_w \in \{0, 1\} \end{split}$$

Maréchal, François, and Boris Kalitventzeff. "Process integration: Selection of the optimal utility system." Computers & Chemical Engineering 22 (1998): S149-S156.

François Marechal	Exergy and process design	Nancy -22.11.2018	24

Consider exergy losses

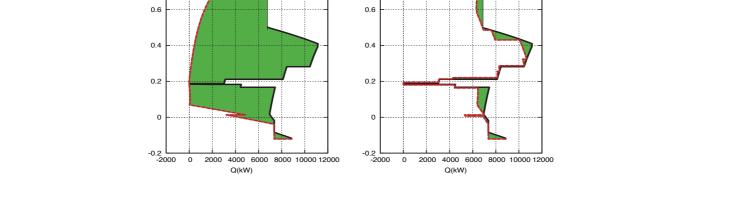



Application : the engineer creativity

Ma	ximun	n en	ergy	, recovery						6	⁰⁰							
_				Energy	Exerg	y				5	50							
_	Heatin	g (kW	/)	+6854	+567					5		HOT U	tility : 6854 kW			Self suffic "Pocket"	ient	
	Coolin	g (kW	V)	-6948	- 1269)				4	50							
	Refrige	eratio	n (kV	W) +1709	+ 157	1			T(K)	4								/
Но	t utilit	ty				_				3	50					_/		
-		/	e : N	G (44495 kJ	/kg)		-			3						Ambi	ant-temp	arature
	Air Pr	eheati	ing							2	-	G	old utility : 6948 k		1 L Refridera	tion : 1709	kW	
	Gas tu	rbine	: NC	θ (el. eff = 32	2%)					2	0	2	000 4000		-	8000	1000	12000
- Ste	am cy	cle				Hea	- at p	oum	sסו				F	Qakw. Lefrig		tior	1	
	Header	Р	Т	Comment		Flu	•								·			
		(bar)	(K)		-	I IU	iu i	1112					Re	frigerant		R717	Amn	nonia
	HP2 92 793 su		superheated	_		Plow	T_{low}	Phigh	Thigh	COP	kWe	Re	ference fl	owrate	0.1	kmol	/s	
	HP1	39	707	superheated			(bar)	(°K)	(bar)	(K)			М	chanical	power	394	kW	
	HPU	32	510	condensation	<u> </u>	vcle 3	5	354	75	371	15	130		р	Tin	Т	0	$\Delta T min/2$
	MPU	7.66	442	condensation			6		10					1		I _{out}	~	/
	IDII					vcle 2	6	361	10	384	12	323		(bar)	(°K)	(°K)	kW	
	LPU LPU2	4.28	419	condensation				244			•			()	()	()		(°K)
	LPU LPU2 LPU3	4.28 2.59 1.29	419 402 380	condensation condensation condensation		Cycle 0	6	361	7.5	371	28	34	Hot str.	12	340	304	2274	2

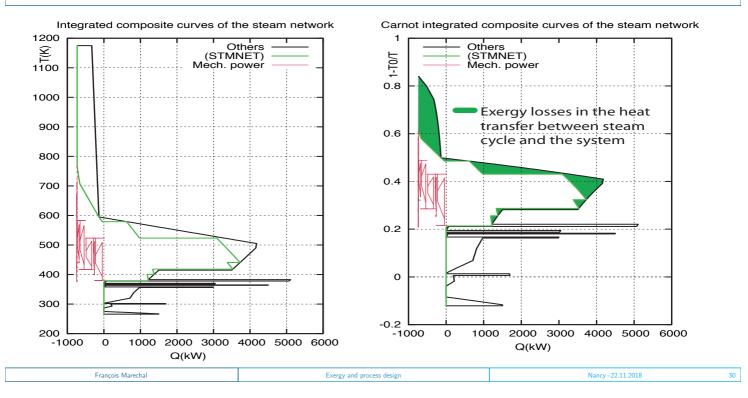
François Marechal

Generating multiple options



27

Visualising the results : Carnot composite


Option 1 : Carnot composite curves Option 5 : Carnot composite curves Process composite curve Utility composite curve 0.8 Option 5 : Carnot composite curve Utility composite curve 0.8

Tricks for creative engineers : reduce the green area !

François Marechal Exergy and process design Nancy -22.11.2018	29	Nancy -22.11.2018	Exergy and process design	François Marechal

Carnot integrated composite curves

Key performance indicator of the system

Energy efficiency

-NGCC equivalence of electricity

$$Total1 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^+ - E^-)}{\eta_{el}} (= 55\% (NGCC))$$

-EU mix for electricity

$$Total2 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^+ - E^-)}{\eta_{el}} (= 38\% (EUmix))$$

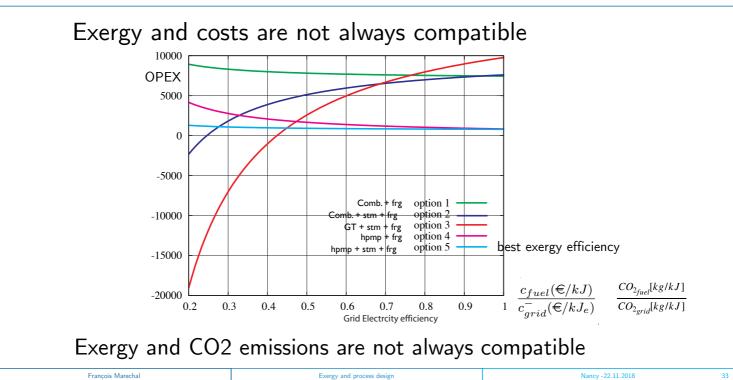
Exergy efficiency of the energy conversion

$$\eta_{ex} = \frac{\dot{E}q_{cold_a} + \dot{E}q_{hot_r} + \dot{E}_{grid}}{\dot{E}^+ + \dot{E}q_{cold_r} + \dot{E}q_{hot_a}} \quad \text{with} \quad \dot{E}^+ = \sum_{fuel=1}^{n_{fuels}} \dot{M}_{fuel}^+ \Delta k_{fuel}^0 + \dot{E}_{grid}^+$$
$$\dot{L} = (1 - \eta_{ex})(\dot{E}^+ + \dot{E}q_{cold_r} + \dot{E}q_{hot_a})$$

! Process units are sources of exergy (supply and requirements) like the energy conversion system

François Marechal	Exergy and process design	Nancy -22.11.2018	31

Results


$Total1 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^+ - E^-)}{\eta_{el}} (= 55\% (NGCC))$
$Total2 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^+ - E^-)}{\eta_{el}} (= 38\% (EUmix))$ Table 9
Table 9

Energy consumption and exergy efficiency of the different options

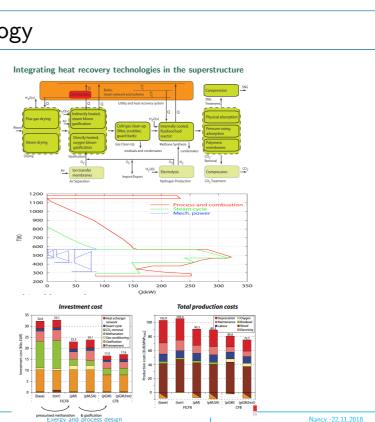
Option	Fuel	\dot{E}_{grid}^+	Total 1	Total 2	η_{ex}	Losses
	$[kW_{LHV}]$	[kWe]	$[kW_{LHV}]$	$[kW_{LHV}]$	%	[kW]
Comb. + frg	7071.0	371.0	7745.5	8029.7	34.9	8868.0
Comb. + stm + frg	10086.0	-2481.0	5575.1	3675.1	44.5	8830.0
GT + stm + frg	16961.0	-7195.0	3879.2	-1630.7	51.3	11197.2
hpmp + frg	0.0	832.0	1512.7	2149.9	72.4	2408.1
hpmp + stm + frg	666.0	125.0	893.3	989.0	72.6	1831.6

Francois	Marechal

Exergy vs Energy cost

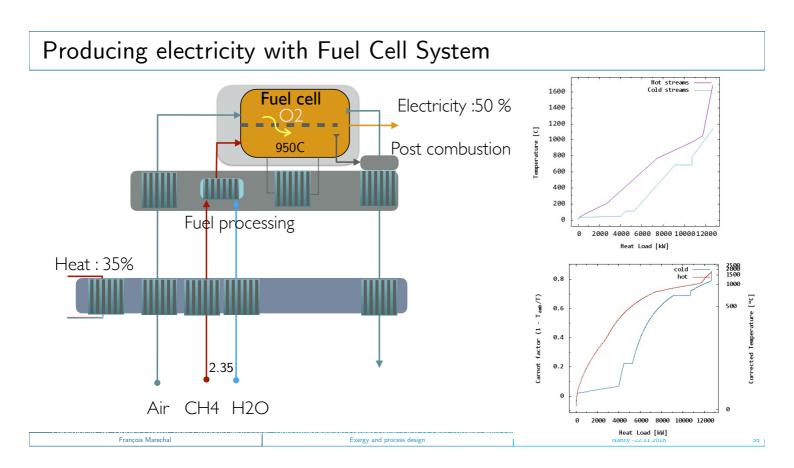
Process design methodology

Super-Structure

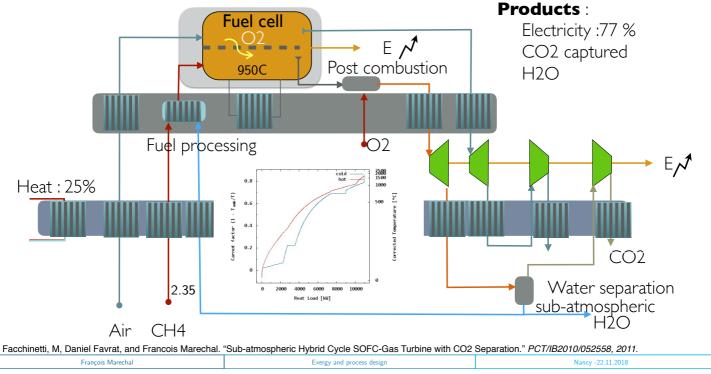

- Flowsheeting models
- Process unit operation
- Process unit options
- Exchange interfaces

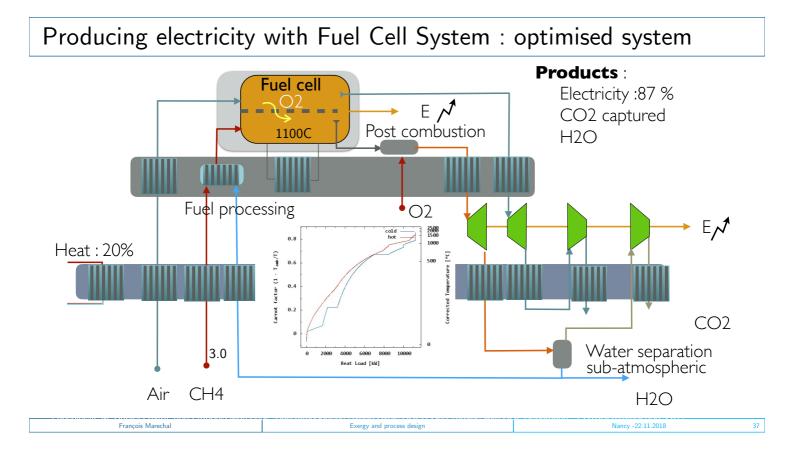
Process integration

- Energy conversion
- Heat recovery
- Energy balance

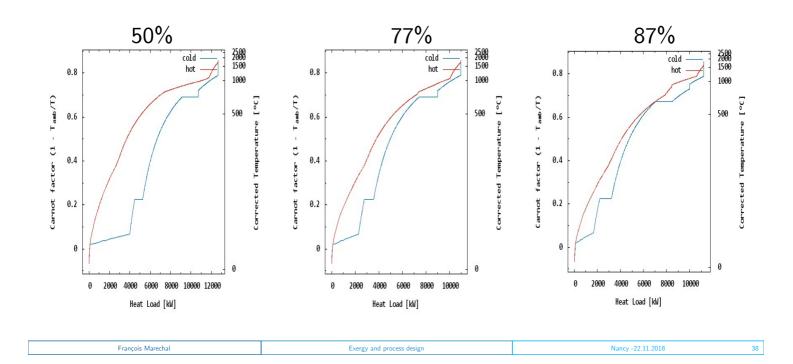

Performances

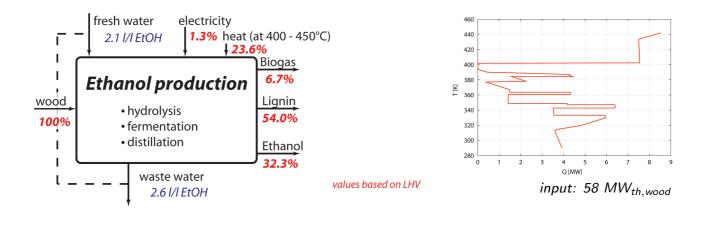
- OPEX
- CAPEX
- LCA
- Thermodynamic




François Marechal

34



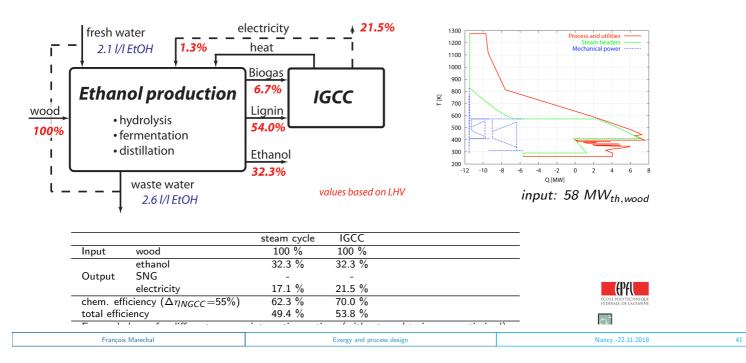


Fuel cell : SOFC-GT

Ethanol production from lignocellulosic biomass:

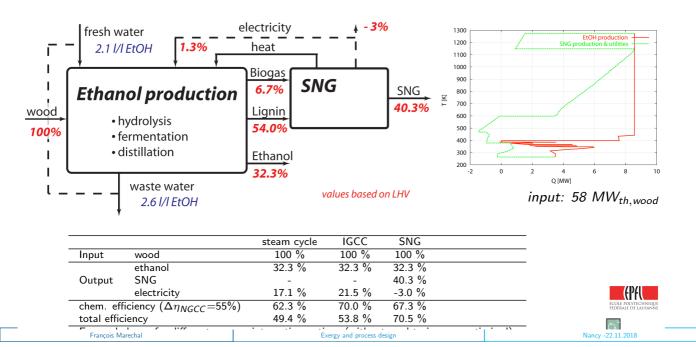
Gassner, Martin, and Francois Marechal. "Increasing efficiency of fuel ethanol production from lignocellulosic biomass by process integration." Energy & Fuels 27.4 (2013): 2107-2115.

François Marechal	Exergy and process design	Nancy -22.11.2018	39

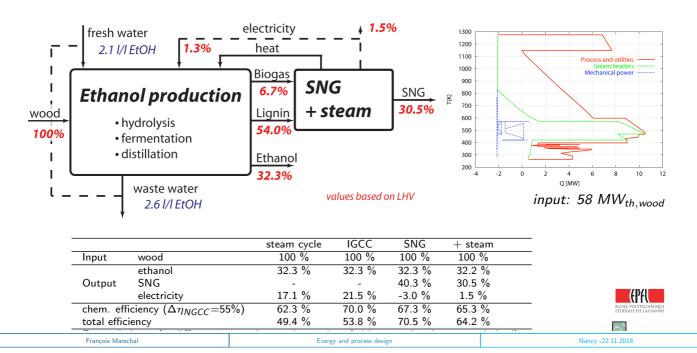

Converting waste streams to satisfy the process needs : CHP

17.1% electricity fresh water 1300 1.3% heat I 1200 2.1 I/I EtOH ī 1100 1000 I Biogas 900 steam **Ethanol production** 6.7% 800 T [K] 700 cycle wood Lignin 600 hydrolysis 54.0% 500 100% fermentation 400 distillation 300 I Ethanol 200 ∟ -25 -10 Q [MW] 32.3% waste water values based on LHV input: 58 MW_{th,wood} 2.6 I/I EtOH steam cvcle 100 % Input wood ethanol 32.3 % Output SNG 17.1 % (PAL electricity chem. efficiency ($\Delta \eta_{NGCC}$ =55%) 62.3 % total efficiency 49.4 % ் Energy balance for different process integration options (without seed train, non-optimised). François Marechal Nancy -22.11.2018 Exergy and process design

Ethanol production from lignocellulosic biomass:


Optimised CHP + power

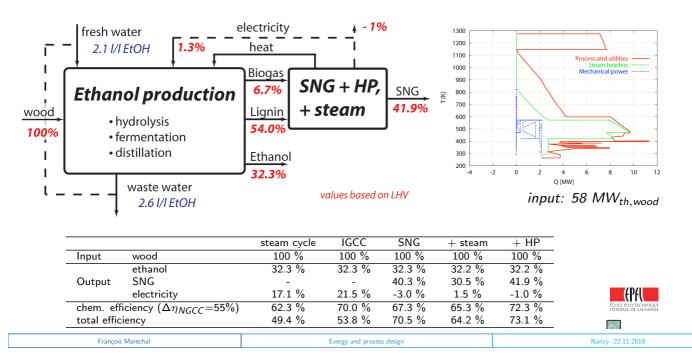
Ethanol production from lignocellulosic biomass:


Combined heat and fuel

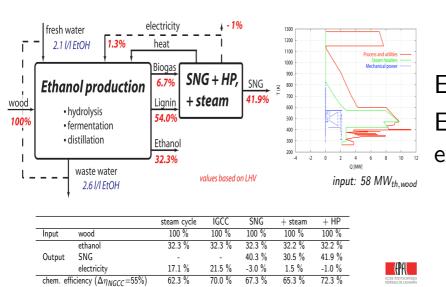
Ethanol production from lignocellulosic biomass:

42

combined heat - fuel and power ?


43

44


Ethanol production from lignocellulosic biomass:

From the exergy analysis

From the exergy analysis

53.8 %

70.5 %

Ethanol production from lignocellulosic biomass:

49.4 %

Energy balance still holds Extracting exergy means extracting energy

Gassner, Martin, and Francois Marechal. "Increasing efficiency of fuel ethanol production from lignocellulosic biomass by process integration." Energy & Fuels 27.4 (2013): 2107-2115.

73.1 %

64.2 %

François Marechal	Exergy and process design	Nancy -22.11.2018 45	

Conclusion : process design and exergy

Modeling and Optimisation techniques to design processes

• Flowsheet models

total efficiency

- Operating conditions
- Process integration
 - unit selection and interactions
- Exergy loss : (one of the) objective function

Exergy analysis

- Definition of process unit interfaces
- Carnot composite for the efficiency of the energy conversion
- Identify missing conversion units
- Reducing losses means changing flows

Any Question ?

François Marechal	Exergy and process design	Nancy -22.11.2018 47	