>REVISITING CHEMICAL ENGINEERING EDUCATION

Eric Schaer ENSIC – LRGP – France Working Party Education - EFCE

>INTRODUCTION

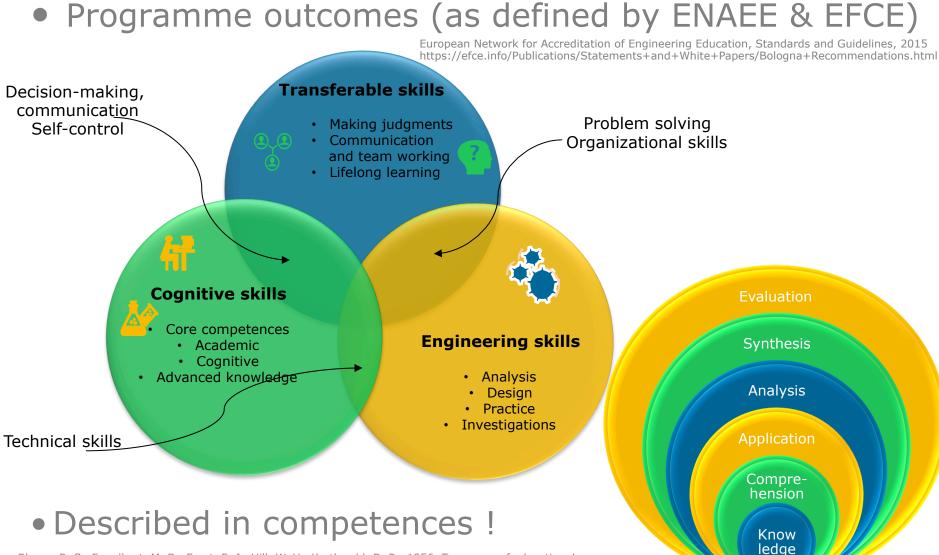
• Changing world

- Depletion of resources, global warning
- Globalisation of markets, increased competitiveness
- Importance of digitalization
- Evolution of (Chemical) Engineering professions
 - Expansion of application areas
 - Mobility, flexibility
 - Importance of HSE, Ethics, digitalization,...

• Evolution of learners

- Y and Z generations
- Digital native students

Evolution of teaching methodologies


- Contributions of neurosciences and cognitive sciences
- Availability of knowledge
- New technologies

>INTRODUCTION

 Should we change something in chemical engineering education ?

- If yes :
 - Evolution of programmes
 - Evolution of teaching methodologies
 - Conclusion
 - Recommendations

>PROGRAMME STRUCTURE

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., Krathwohl, D. R., 1956, Taxonomy of educational objectives: The classification of educational goals. Handbook I: Cognitive domain. New York: McKay

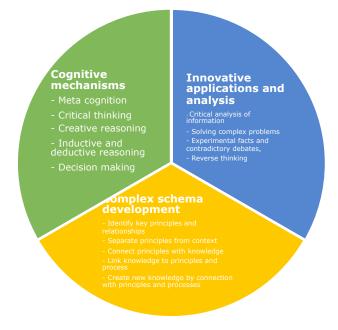
>PROGRAMME OUTCOMES

- Importance of basic knowledge & understanding !
 - As recognized by both industrialists & academics (https://research.ncl.ac.uk/iteacheu/, https://chme.nmsu.edu/files/2016/09/2015che_academicindustryalignmentstudy.compressed.pdf)
 - But should include new trends (bio, products, sustainability, dynamics, digital ...)
- Engineering skills
 - Should not be reduced (labs, projects, interdisciplinarity...)
 - Internships, co-op studies, participation of industrialists in teaching

• Transferable skills

- Creativity, problem solving, critical thinking, originality, emotional intelligence, collaboration, interculturalism, ...
- All are described for 3 years (180 ECTS) or 5 years (300 ECTS) programmes

>PLANT OF THE FUTURE


- Meet industrial needs and training contents
 - Knowledge and skills in digital technologies
 - Artificial Intelligence, Internet of Things, 3D Printing, Robotics and Automation
 - Modelling, Simulation, Optimization, Intensification, Digital Twin
 - Connected and dynamic factories
 - Predictive maintenance
 - Use & Development of codes
 - Data analysis
 - ...

Transferable skills

Top skills

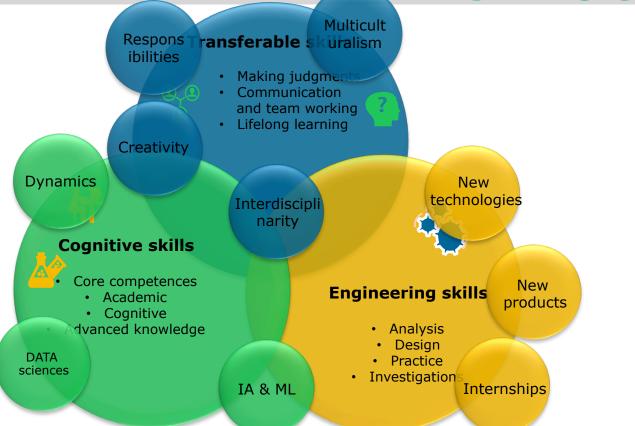
- 1. Solving complex problems
- 2. Critical thinking
- 3. Creativity
- 4. Human managemen
- 5. Coordination with others
- 6. Emotional intelligence
- 7. Judgement and decision
- 8. Service orientation
- 9. Negotiation
- 10. Cognitive flexibility

Industrie du futur : du système technique 4.0 au système social, Académie des Technologies, 2017

Innovations in Knowledge and Learning: Postsecondary Education Reform to Support Employment and Inclusive Growth, ADB, 2017

>PLANT OF THE FUTURE

- The future chemical engineers will have to deal with
 - Information inflation
 - 5000 publications per day (in 2015)
 - Interdisciplinarity
 - To manage complex problems
 - Internationalization of markets and supplies
 - Multiculturalism
 - Environmental aspects
 - Circular economy
 - Social responsibilities
 - Innovation and risk control
 - Decision making
 - With incomplete or limited information
 - Critical thinking and creativity
 - Innovation, relations with research
 - Ability to anticipate
 - Good knowledge of current societal and technological evolutions


>FUTUR PROGRAMME OUTCOMES

Basic knowledge & understanding

- Core topic structure remains adapted to new processes,
- Balances, Thermodynamics, Transports, Separations, Reactions, Unit Operations
- Mathematics, Physics, Chemistry, Biology, Informatics & digitalization (data management, digitalization, process control & dynamics, IA, ML)
- Engineering skills
- Analysis (complex processes, systems & products), esearch
 Design (of a process or product also complex in the second state)

 - Investigations (application of emerging technologies)
 - Active teaching - Practice (software, equipment, ethics, HSE economy)
- Transferable skills
 - Can not be developed passively...

>FUTUR PROGRAMME STRUCTURE

The (initial) training time seems insufficient to cover all the concepts related to the factory of the future !

 Develop lifelong learning especially as the dynamics of change in industrial production will only become more strained !

>INTRODUCTION

• Should we change something in chemical engineering education ?

• If yes :

- Evolution of programmes
- Evolution of teaching methodologies
- Conclusion
- Recommendations

>NEUROSCIENCES & COGNITIVE

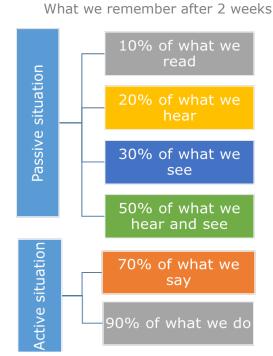
Mutual attention

- Pay attention to learners' involvement
- Learners do not always have the right level of information

• Active engagement

 Promote learning conditions allowing active engagement of learners and cognitive effort


• Feedback


- Allow time to make mistakes...

• Distribute the learning phases

 Promote transfer of acquired knowledge

Stanislas Dehaene, Apprendre ! - Les talents du cerveau, Le défi des machines, Odile Jacob, Paris, 2018

>ACTIVE TEACHING

Methodologies

- Flipped Classroom
- Problem Based Learning
- Project Based Learning
- Serious Games
- Blended Learning
- Online courses...

• Tools

- Learning analytics
- Tutorials
- MOOCs
- Virtual / augmented reality

>LEARNING SPACES

- Adapted to active teaching methodologies
- Promoting dynamic and interactive pedagogy
 - Laptop computers, remote screens on the walls, swivel chairs with tablets, interactive digital boards...

- Video capture for distant learning
- 3D glasses, virtual reality headset...

- Chemical engineering concepts are necessary for the plant of future
- New emphasis is needed on digitalization & transferable
 - Competencies are to be defined in concertation with employers
 - Some universities have introduced PSE specializations
- Active teaching and tools ensure better involvement of the learners, and are known to improve training, favoring acquisition of knowledge and development of skills
- Time, for acquisition and implementation
 - Propose some specializations
 - Be prepared for lifelong learning

>RECOMMENDATIONS

Institutions

- Involve industrialist in steering committees
- Promote teachers' training
- Encourage the use of active methodologies, tools & learning spaces

Industrialists

- Contribute to the reflexions on teaching contents
- Be involved in acquisition of engineering and transferable skills
- Propose internships, co-op trainings

• Teachers

- Use and develop reflexive teaching
- Continue to train on innovative technologies and teaching methods
- Develop & promote lifelong learning activities

>THANK YOU FOR YOUR (ACTIVE !) ATTENTION !

>TO BE CONTINUED...