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FOREWORD

Werome

Artificial Intelligence and Machine Learning have had in the
recent past a tremendous impact on chemical engineering. On
the long run they can radically change the way in which we
perform research on chemical processes, we design, scale-up
and optimize chemical reactors and pieces of equipment and
they can potentially introduce new paradigms on chemical
process control and operation.

Many are the challenges ahead for our community that can be
addressed by the European Federation of Chemical Engineering
(EFCE) and its Working Parties and Sections. These can be a
successful journey only if the European Chemical Engineering
community, both academic and industrial, is fully engaged.

The European Forum on New Technologies is ideal event to
discuss such challenges as it offers a one-day event dedicated to
new scientific developments where industrialists and academics
can exchange views related to a specific chemical engineering
challenge.

That is why we have brought together a number of visionary
speakers at this event to present the potential and challenges
ahead. There was the opportunity to discuss the fundamentals of
artificial intelligence, deep learning and machine learning, as
well as their applications to process modelling, control and the
building of digital twins.

The 5" European Forum on New Technologies was organized in
Paris on 13 December 2024, gathering experts, professionals,
and researchers from academia and industry (with about a
50/50 representation academia/industry and no less than 42
companies taking part) to discuss the role of Artificial
Intelligence in Chemical Engineering.

The large attendance (130 participants) coming from 17
countries confirms that Artificial Intelligence (Al) is a hot topic
that concerns many areas of chemical engineering.

The program which was structured in three sessions followed by
a round-table held at the end of the day covering different
aspects of Al in Chemical Engineering.

This White Paper is based on the oral presentations given during
the day and aims to summarize the discussions that took place. It
describes the applications of Al in different areas of chemical
engineering and provides guidelines and warnings about the
precautions that should be taken when implementing it.

Martine POUX
Coordinator of the EFNT
EFCE Scientific Secretariat
SFGP General Delegate
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OVERVIEW OF ARTIFICIAL INTELLIGENCE FOR
PROCESS ENGINEERING

Q ARTIFICIAL INTELLIGENCE & MACHINE LEARNING IN THE PROCESS
INDUSTRY: WHERE WE ARE AND WHERE WE ARE GOING

With Al, complex, non-linear objective function tasks, such as identifying the effect of
temperature, flow or pressure on vyield in a distillation column, that previously stumped
chemical engineering graduates, can now be effectively addressed, with machines
leveraging sensor data and employing feature engineering to identify critical factors,
supported by explainable Al techniques such as parallel coordinate and Shapley plots.
GenAl tools can now easily apply appropriate algorithms and predictive analytics to deliver
strong results, making the democratization of advanced analytics in process engineering a
reality.

Challenges remain, however, in applying these innovations within the industrial sector,
notably due to weight of technical debt, rigid automation hierarchies as companies opt to
retain foundational systems and reduce costs, and conservative practices, particularly in the
chemical sector, driven by security concerns. Sensor reliability and the slow pace of sensor
innovation further constrain progress. While significant opportunity resides in valuable data
sources such as PIDs, process flow diagrams (PFDs), and flow-sheets, their integration with
Al remains limited, and data-preparation for Al use also poses significant hurdles. Industry
demand focuses on practical applications such as patent consolidation, literature-driven
technology generation, and cost optimization, contrasting with academia’s emphasis on
complex models. Looking ahead, advances such as increased integration and Al-assisted
troubleshooting, automated documentation, digital twins, VR environments, and
self-optimizing systems, are expected to transform operations within the next two to five
years, although foundational upgrades remain a current bottleneck.

O DIFFERENT WAYS IN WHICH ARTIFICIAL INTELLIGENCE CAN BE USED
WITHIN THE ORGANIZATION TO OPTIMIZE INDUSTRIAL PROCESSES

Industrial firms often underutilise their data, with access largely limited to specialists rather
than operational teams. Unlocking value requires broad data utilisation alongside advanced
analytics, including Al, statistics, and machine learning. Key barriers here include
fragmented data systems, traditional data structuring, and the challenge of acquiring near
real-time, contextualised data for meaningful decision making.

Effective application of Al hinges on establishing a strong business context, combining
diverse data types such as time series from sensors and traceability data from production
campaigns, and bridging the expertise gap between data specialists and process operators.
Integrating heterogenous data remains challenging due to differing formats, varying levels
of expertise, and a lack of data proficiency among operational staff, particularly in
resource-constrained environments. The deployment of Al in process manufacturing
requires careful consideration of both operational technology and cloud-based systems, and
embedding Al directly into applications allows users to benefit without deep technical
knowledge, which streamlines operations. In complex industries, such as speciality chemicals
and dairy, tracking genealogy from raw materials to final product is vital, as early-stage
decisions impact end-quality.

Proper data structuring at the right granularity underpins robust model development and
effective processing and aggregation of data, often through combining process expertise
with machine learning. Model optimisation and lifecycle management, encompassing
deployment, monitoring, and retraining with updated data, is essential for sustained value.
Reducing model parameter redundancy, through consolidating correlated sensor data and
focusing on key control parameters like vacuums, further enhances model efficiency,
enabling more precise variability analysis and optimized process control tailored to
manufacturing environments. 04



O ARTIFICIAL INTELLIGENCE TOOLS FOR PROCESS MODELLING AND
SIMULATION: A CRITICAL OVERVIEW ON POTENTIALITIES AND
LIMITATIONS SO FAR

Al is drawing increasing attention in Chemical engineering, driven by broad interest in its
potential benefits, academia’s aim to solve related overarching challenges, and the
industry’s push for automation and improved efficiency.

A key challenge in process engineering has long been optimizing complex systems,
particularly through Mixed-Integer Non-linear Programming (MINLP). While past hurdles
like scheduling and control have by now been largely resolved, today's focus lies on
designing plants capable of handling uncertainty, especially given variable renewables and
decentralised, modular manufacturing. Black-box approaches help to integrate diverse
components, addressing biological complexity and uncertainty often missed in practice,
while academia emphasizes analytical models and industry leans on empirical, case-specific
solutions.

Rather than questioning the reliability of data-driven methods, critical examination reveals
that it is more productive to compare them with alternative approaches. Available tools,
including emulation platforms, ProSim, and Aspen, are available for use in the field, which
require thoughtful application of sampling strategies, modelling techniques, and crucially,
data pre-treatment to ensure reliable outcomes.

A significant barrier lies in “trust stagnation”, which undermines confidence in simulations,
despite the fact that many chemical processes are less non-linear than once believed.
Simplistic approaches may not suffice when assessing chemical plant output, and surrogate
models must, in these cases, be cautiously implemented, as errors in one part can cascade
through interconnected systems, distorting mass and energy balances. In dynamic models,
system response time also represents a critical constraint, particularly when solely
concerned with data-driven approaches. Ultimately, recognizing system-specific limitations
and potentials is here essential, as conclusions on feasibility may differ across contexts.

() DISCUSSION

While GenAl holds promise for advancing industrial processes, several challenges temper
expectations for its near-term deployment. A central concern is the lack of explainability in
current Al systems, which limits trust and raises questions concerning how much responsibility
can be delegated to such technologies. Integrating documentation and contextual
information into GenAl and machine learning systems is seen as essential to improving
situational awareness and reliability.

Experts agree that fully autonomous Al-driven process management remains o distant
prospect, with safety, ethical, and regulatory considerations to be addressed prior to
real-world implementation, particularly in sensitive environments such as industrial plants.
Current Al architecture, which includes large language models, is not designed to operate
automated facilities, and significant technological hurdles remain. Leading research, such as
that presented at recent Al conferences, highlights both the limitations of existing systems
and the pathways to potential solutions. Overall, GenAl's role in automation is expected to
evolve gradually, and any advances will require continuous reassessment as the technology
matures.
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The effective implementation of artificial intelligence in industrial and laboratory settings
hinges on the availability of appropriate and sufficient data. While process manufacturing
industries such as chemical, oil, and gas benefit from long-established systems for data
collection, the agro-industry and food and beverage sectors often face more fragmented
scenarios, particularly in smaller facilities with autonomous but disconnected control
systems. Although advances in technology are improving access to data, key considerations
around the operational technology layer remain critical to ensure accuracy.

A common challenge here lies in defining “right data”. Industrial operations typically focus
on process data, including temperature, pressure, and time, derived through control
systems.

However, this focus typically overlooks equally important product-related information, often
obtained from laboratory analysis. Understanding the interaction between product and
process is crucial, as maintaining reliable mass balance, a fundamental metric in this field, is
essential for accurate calculation of yield and performance optimization with respect to
control, laboratory, maintenance, and other related data sources. To achieve greater
accuracy, real-time product data is increasingly prioritised over commonly delayed
loboratory experiment result data. Work in this field is ongoing, with experts implementing
online analysis tools that utilise near-infrared chromatography, which is crucial for robust
monitoring and control precision.

Beyond data collection, maintaining general data integrity is of critical importance. Even
when sensors appear to be properly functioning, subtle deviations may undermine data
reliability, a phenomenon which underscores the importance of combining engineering
expertise with statistical methods, data reconciliation, and other verification techniques to
validate and contextualise data. Ultimately, successful Al deployment will be contingent not
only upon data quantity but also quality, as well as integration capabilities across multiple
systems.

A fundamental distinction between physical and data-driven models lies in their ability to
provide explainability and establish causality, an aspect which becomes critical when
operators rely on models to inform decision-making. While physical models offer clear,
causally grounded insights, data-driven models often fall short in transparency, which can
limit user trust and acceptance.

Ensuring model explicability has hence become a central focus in laboratory research,
particularly in the context of Al's turbulent history. So-called “Al winters” of the past were
marked by a stagnation of research efforts, and these events now serve as cautionary
reminders of risks involved when confidence in Al tools erodes. Maintaining explicability is
hence deemed essential to prevent repeats of this cycle.

Techniques such as the Shapley approach have emerged as promising tools to improve
explainability, although they fail to address causality. Beyond technical solutions, fostering
trust also requires the careful definition of a model's operational boundaries. Users must
understand where models perform reliably and where caution is warranted. Providing clear
guidance here on appropriate input and application domains helps avoid misuse and
promotes effective usage.
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In summary, designing models that balance effective control, user interaction, and
transparency remains a significant challenge, but is one that must be addressed to ensure
responsible and sustainable Al integration into industrial processes.

In the context of industrial processes, whether in reactors, distillation units, or other
equipment, the choice of modelling approach plays a pivotal role in achieving meaningful
insights. Machine learning and statistical models are often viewed as distinct from physical
principle-based models, yet, when thoughtfully combined, they can prove highly
complementary. On one end of the spectrum here lies the “black-box” approach, while the
phenomenological approach rests on the other. Between these poles exists a rich space of
alternative methodologies that blend foundational principles to enhance precision and
reliability.

A critical insight to be gleaned here is that much of the value of Al modelling does not stem
solely from selecting or training the model itself, but from feature engineering. Here,
domain expertise in physics and chemistry takes on essential importance, and can be
integrated through strong feature engineering informed by robust understanding of
processes involved. Hence, effective pre-processing serves as the bridge between physical
insight and machine learning.

A critical concern in applying Al to industrial processes is the risk of introducing human
biases, particularly during feature selection or data interpretation stages. This raises both
technical and philosophical questions. It is essential to understand the limitations of the
methodologies in use and to approach machine learning, statistical models, or data-driven
models, from a position of sufficient understanding of the tools involved. Without a solid
grasp of related functions, bias could easily be introduced into results. While feature
engineering plays a major role here, the influence of bias can at times be diminished by
selecting appropriate algorithms to help balance discrepancies. Nonetheless, defining
clear performance criteria remains the responsibility of those developing the models. Even
if some bias enters the model through feature engineering, reaching targeted
performance outcomes suggests the meeting of objectives, although this does not
automatically guarantee reliability.

Another crucial factor here is data quality. New or more sophisticated models are not
inherently more trustworthy, and underlying data quality remains of critical importance.
Industrial settings also present their own challenges, including engaging with operators, on
which the importance of robust methodologies can not be overstated. Without dependable
methods, Al is at risk of being built upon flawed foundations, and best practices such as
using models to identify sensor drift or to perform mass-balance calculations represent
essential safeguards to ensure data integrity and trustworthy Al applications.
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GENERATIVE ARTIFICIAL INTELLIGENCE AND
TRANSFORMATION IN PROCESS ENGINEERING

O TRANSFORMING PROCESS ENGINEERING WITH GENERATIVE ARTIFICIAL
INTELLIGENCE

GenAl is already making notable contributions to the computing industry, particularly in
tasks such as automated error correction. In process engineering, this capability holds
obvious promise, particularly for managing complex engineering diagrams such as P&IDs
that can span thousands of pages. Beyond simply catching mistakes, GenAl has the potential
to improve maintainability, controllability, and sustainability. It could, for example, assist
engineers by suggesting how to specify, operate, and design target systems based on
available data. GenAl's role could also extend to hazard identification, helping to generate
preliminary safety assessments and saving valuable time.

While tools such as ChatGPT can already generate process suggestions, their effectiveness
in creating practical engineering solutions remains limited. Progress in this area will require
close collaboration between researchers and industry to develop GenAl tools that are both
reliable and domain specific. Key components for success here include access to substantial
data, effective information representation, and the use of appropriate model architectures,
particularly transformer models, alongside integration of domain knowledge from physics
and material science. The established roadmap for these efforts aims to address four key
challenges, including auto-completion of flow-sheets, PFD-to-PID translation, auto-
correction of PIDs, and Al-augmented HAZOP.

A central question is whether chemical and process engineering qualifies as a “big data”
domain, as current literature suggests that data availability is limited in the field. As an
interim solution, hybrid models that combine physical principles with machine learning have
emerged, which reduce data requirements while enhancing generalization.

The engineering community generates vast amounts of data, from flow-sheet simulations
and property data to academic research outputs. The challenge here lies in the
heterogeneous nature of this data, which is often difficult to access, not readable by
machines, or restricted by confidentiality. To overcome this, collaboration with industry and
dedicated data-gathering initiatives, such as Digico, a digitization companion, are essential.
Once data is acquired, it must be prepared for machine learning models. Two main
representations dominate here, including graph representation, where equipment items are
treated as nodes and their connections as edges, and string representation, which is
favoured by many GenAl models for its simplicity. Selecting the appropriate machine
learning architecture is equally important. Classical transformers are well suited for
sequential text data, while graph neural networks excel in graph-based data contexts. The
choice here should align with the type of data being used.

Although rule-based approaches offer transparency and efficiency, they face challenges:
rule implementation demands deep expertise, and even minor errors can lead to system
failures or overlooked edge cases. Despite these complexities, certain rules can be easily
implemented and may apply broadly across multiple PIDs to improve safety. Machine
learning offers the added promise of automatically deriving rules from existing PIDs, which
could significantly streamline design and testing.The broader success of models such as
ChatGPT lies in their ability to integrate across diverse tasks and languages, and engineers
require such tools to integrate multi-modal information and provide interconnected process
insights to better generate and refine ideas.

Looking ahead, research aims to establish a PILOT process intelligence and optimization
tool, a multi-agent system where large language models can interact and collaborate on
specialised tasks, interfacing with databases and simulation tools to drive advances in

process synthesis.
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In summary, data access is of critical importance in the field. As most university researchers
do not possess their own sizeable engineering datasets, partnerships with industry players
are essential. Without prioritizing access to digital engineering data, the field runs the risk
of falling behind in the competitive landscape of innovation, and of missing out on key
opportunities for business while transforming engineering practice for the better through
the incorporation of GenAl into its methodologies.

©) PROCESS FLOW-SHEET GENERATION BY ARTIFICIAL INTELLIGENCE:
MOTIVATION & CURRENT STATE

EDF focuses not on the sale of individual processes, but on delivering electric power
systems: a mission that spans weather conditioning, wastewater treatment, and energy
conversion. While nuclear reactions share roots with chemical processes, they bring distinct
challenges, such as mass imbalances, which necessitate cautious selection and process
design.

To improve process design, EDF has long relied on computer-aided engineering, enabling
engineers to select and simulate various processes tailored to specific applications. Today,
the approach here is evolving from one of a traditional iterative design cycle to one of
generative paradigm, where engineers define desired performance outcomes, while Al
assists in determining optimal configurations. Compared to traditional methods, the benefit
of this approach may be illustrated through a recent case which explored the CO2 Brayton
cycle as a potential alternative to conventional steam cycles. Using simulation tools,
engineers here conducted parametric studies across temperatures and pressures to
successfully optimize net cycle efficiency.

To facilitate Al-driven process design, the laboratory developed a specialized, compact
language that represents PFDs as character sequences. Training models to work with this
language requires them to grasp its syntax, as random letter combinations do not constitute
valid words or processes. A recurrent neural network was employed by researchers to this
end, capable of generating process sequences by predicting next equipment items, such as
turbines, based on prior elements. While the model was trained without explicit guidance,
specific filtering rules ensured that the resulting process diagrams were coherent,
interconnected, and meaningful. Fine-tuning and optimisation marked the next phase of
research, in which the Al-generated PFDs were simulated and optimised using in-house
simulation, translating the Al's terminology into the simulator’s language and setting
necessary optimisation parameters. Research here remains ongoing, and going forward,
robust communication standards and data formats could enable the integration of
established process simulators like ASPEN into this new and innovative Al-driven workflow.
To date, two key objectives have been achieved here: power cycle efficiency and shaft
power, which are both critical for maximizing output. The algorithm’s ability to generate a
diverse array of processes highlights its potential to produce novel designs, and
comparisons with expert designs indicate promising alignment, underscoring the system'’s
capacity to incorporate established heuristics and provide innovative and unconventional
solutions.

Looking ahead, EDF aims to systematize the computational generation and evaluation of
numerous processes, which will add a new layer of automation to process design. The goal
here is not to replace engineers, but to free them to focus on more critical tasks, such as
defining and analysing problems, as well as formulating and evaluating solutions, with these
areas remaining firmly in human hands, beyond the capabilities of machines. However, two
critical challenges remain to be addressed. The first of these is data availability, with
molecular design benefitting from abundant and well-documented datasets, while in
contrast, process engineering lacks comparably rich datasets, partly due to how processes
are recorded, as well as the nature of their specific properties. The second of these is
process evaluation. While generating possible process flows through Al is becoming
increasingly feasible, assessing their performance remains a considerable challenge, while
optimization can be highly resource-intensive, making the development of more efficient
approaches, such as benchmarking frameworks, a high priority task for current research.
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(O DISCUSSION

Non-converged solutions are common in process simulation, especially when tools limit
access to the underlying code. To address this, hard-coded simulations such as Hinao's have
been used, although they still produce some failures. Some non-convergence here stems
from attempting to simulate invalid processes, which can simply be excluded during design
and generation. For issues of purely convergent nature, the perspective has shifted: instead
of discarding all failed solutions, partially successful outcomes, such as those indicating 90%
efficiency metrics, are now seen as valuable, and the introduction of penalty functions
represents a potential strategy to handle such cases.

The application of autocompletion features in PNI offers promising insights but presents
significant challenges due to the variability of control structures across industrial plants.
While models can be completed to reflect specific scenarios, they may not generalize
accurately, as control objectives may differ greatly. For example, pressure control in a flash
unit may conflict with maximizing flow if the stream returns to a reactor, and in heat
exchanges or condensers, cascade control strategies may be required to reconcile
temperature and flow objectives. Such complexities underscore the importance of
considering system-specific logic when implementing PNI autocompletion. Experts have
expressed confidence that initial proofs of concept will, when built upon by a collaborative
research community, result in the discovery of new, innovative, and effective solutions.

Recent research has explored the use of superstructure optimization methods to improve
model outcomes. Comparative evaluations of three optimization approaches have indicated
that the superstructure method currently delivers the most promising results, outperforming
alternatives such as evolutionary programming. Although further improvements in training
and simulation times may enhance the superstructure's performance, current solutions
already approximate near-optimal configurations.

Looking ahead, the integration of Al with established domain knowledge is seen as a critical
research frontier. While rule-based systems alone are restricted by limitations, the process
industry anticipates the development of hybrid systems that blend Al capabilities with expert
oversight, with the incorporation of robust data management through “data room” concepts
is expected to play a central role in enabling these innovations.

The parallels between P&IDs and electronic circuits present another compelling opportunity
for the application of GenAl. Significant progress has been made in electronic circuit design
using generative models, supported in part by the availability of extensive open-access
databases. By contrast, similar resources are notably scarce in the domain of P&IDs,
limiting the ability here to train and validate Al models at scale.

The proprietary nature of industrial process data poses a key challenge in this respect.
Many P&IDs, particularly those associated with sensitive sectors such as nuclear energy, are
tightly guarded and unlikely to be released publicly, creating a critical bottleneck for
developing and generalizing Al applications in process industries. Additionally, the structural
and functional differences between PFDs and P&IDs must be acknowledged. While process
engineers typically develop one form, project engineers are responsible for the other,
reflecting distinct scopes and purposes. In large projects, approximately 20% of P&IDs are
developed by engineering firms, while the remaining 80% often originate from various
technology licensors. Consequently, there is limited scope for intervention in this area.

Despite these challenges, collaborations with engineering firms have enabled progress by

focusing on simpler, modular tasks, with standardization and improved data accessibility
representing critical factors towards successful Al integration in the field.
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ARTIFICIAL INTELLIGENCE APPLICATIONS IN
CHEMICAL ENGINEERING

(© HYBRID MODELLING AND DIGITAL TWIN IN CLINKER PRODUCTION

Industrial integrators such as Technord employ hybrid modelling approaches in chemical
engineering, integrating data-driven techniques with physical mass and energy balance to
enhance process optimisation. This approach merges statistical analysis, regression, and
traditional methods with differential equations, creating a more accurate solution space
compared to purely data-driven modelling. Focus here lies on developing software sensors
to support decision-making in industrial operations, emphasizing intelligent maintenance
and pattern recognition while assessing the impact of machine quality on process
development by bridging data silos across systems.

A current project in clinker production uses advanced process control for predictive KPls
and early detection, adiming for optimized energy use and predictive maintenance. Three key
pillars drive this initiative: defining the use case, ensuring the availability of high-quality
data, and securing support for change management. The goal is to optimize the combustion
process in cement production, particularly by efficiently storing limestone and lime to
minimize energy consumption in the kiln, reducing operational risks such as clogging and
excessive energy input.

Data analysis plays a critical role in monitoring and adjusting energy usage in this field. By
focusing on minimizing fluctuations around target CO2 levels, researchers aim to prevent
underutilisation or overloading of energy systems, which can disrupt production, as well as
reducing costs. After months of monitoring work, involving crucial high-quality data
modelling techniques revolving around KPls concerning quality in real time, the predictive
model employed achieved an 84% accuracy rate, with plans since being established to
implement a closed-loop system supported by structured training for operators, with a focus
on ensuring that process engineers recognize that the introduction of Al serves as a
supportive tool rather than a threat to their employment. This system leverages Al to
enhance performance metrics, optimize operational processes, improve energy efficiency,
and stabilize product quality, while adapting to changing market requirements. Engaging in
such data-driven projects necessitates critical evaluation of information to guide
decision-making, and in the incident production sector, which operates on slim profit
margins, the importance of volume and the need for increased optimization to maintain
competitiveness is increasing.

Q USING MACHINE LEARNING FOR ONLINE 3D CHARACTERIZATION OF
CRYSTALS IN SUSPENSION

Crystal morphology plays a critical role in material processing. For instance, two powders of
identical polymer type and mass but differing crystal shapes may exhibit vastly different
behaviours: equant crystals flow smoothly and compactly, while needle-like crystals
aggregate into clumps and occupy greater volumes, despite featuring identical mass and
density. This reality underscores the need for tailored characterization approaches across
diverse morphologies. Crystals can be broadly classified into three morphological categories
for characterisation: spherical approximations, with cubic crystals such as sodium chloride
effectively described through a single dimension, this being diameter; cylindrical
approximations, with needle-like crystals requiring two-dimensional length and width
characterization; and cuboidal approximations, with plate-like particles demanding a full
three-dimensional characterisation, incorporating length, width, and thickness.
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To date, only two academic instruments are capable of performing true three-dimensional
characterization of plate-like crystals: a recently developed offline device at the University
of Manchester, and an online instrument developed in-house by a Swiss laboratory. This
device, currently seeing research usage, is known as the Dual Imaging System for
Crystallisation Observation (DISCO). It operates by circulating suspension from a reactor
through a glass cell, where two perpendicular cameras, illuminated for enhanced contrast,
capture particle images which allow for effective particle analysis and subsequent three-
dimensional reconstruction based on matched image contours. However, caveats are
present in this case, with the measuring of platelet length raising challenges, and with the
same particles potentially appearing differently across images based on their orientations
at the moment of capture.

Single-camera systems can estimate only up to two dimensions, often with
orientation-dependent variability. The addition of a second camera in this case improves
reconstruction accuracy, but may on occasion overestimate thickness when combining
projections. Understanding these effects is crucial towards final accuracy in the
measurement of different populations and in employing various length estimation
algorithms. Recognising these limitations, research teams have developed a comprehensive
test set covering a wide range of particle types and morphologies, which enables systematic
evaluation of length estimation algorithms under certain constraints that limit the range of
particle sizes.

Experimental workflows here involve repeated sampling of the same spatial region, the
inclusion of non-cuboidal particles, and simulated measurements. From the resulting
contours and 3D reconstructions, which encompass circularity, convexity, and area and
volume scale, both 2D and 3D pre-processing steps can employ intercorrelation filtering,
recursive feature elimination, and hyper-parameter optimisation, followed by a seven-fold
cross-validation and ensemble averaging process across 10 models. The culmination of this
work was a neural network model in which the average error metric was reduced by 33%
when compared to conventional approaches. Additionally, research here has probed the
relationship between crystal morphology and model performance, and has demonstrated
superior precision of the machine learning approach in characterizing plate-like particles.

However, the computational model does not fully replicate real-world conditions, omitting
factors such as blur and assuming uniformly distributed particle orientations. To bridge this
gap, experimental validation is being pursued using an innovative analytical standard
fabricated via photolithography techniques, which enable precise and previously unavailable
ground-truth measurements.

O PREDICTING SOLUBILITY LIMITS WITH MACHINE LEARNING

Regarding property prediction models, researchers emphasize the relationship between
molecular structure and properties. Accurate molecular property predictions are
fundamental to designing efficient process flow-sheets and unit operations, particularly
when dealing with novel molecules. Research here also emphasises the prediction of
solubility limits, specifically within the pharmaceutical industry, where understanding the
solubility of active pharmaceutical ingredients in various organic solvents is vital in the drug
design process.

Two key properties lie at the heart of current analysis in this field: solvation-free energy and
solid solubility. Both have profound implications for optimizing processes such as organic
synthesis, liquid-liquid extraction, and continuous processing, as they directly influence the
efficiency and feasibility of pharmaceutical manufacturing.
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Central to the development of predictive models is the challenge of effectively representing
molecular structures within a machine learning framework. Graph neural networks have
emerged as a powerful solution here, and are particularly suited for molecular systems. In
this approach, atoms serve as nodes and bonds as edges, each characterized by specific
atomic features, including atomic number and mass, as well as bond features such as bond
type. Graph neural networks facilitate machine learning by facilitating the exchange of
information between neighbouring atoms and bonds, ultimately generating latent
representations that correlate with target molecular properties.

For solvation-related property analysis, researchers consider it essential to consider both
the solute and solvent as separate entities within the neural network. This separation is
accomplished using two distinct message-passing neural networks, one for the solute and
another for the solvent, whose outputs are then concatenated to predict the desired
property. Extending this framework to handle solvent mixtures introduces additional
complexity, and to ensure that the neural network provides consistent results regardless of
the order of solvents, the network incorporates solvent embeddings weighted by molar
fractions which are summed to enable comprehensive embedding and to guarantee
permutation invariance for solvent mixtures, allowing for effective prediction of solubility
properties of solutes within target mixtures.

While there exists an abundance of data concerning certain molecular properties, one
major challenge in this field is the limited nature of P&ID data specifically, particularly for
solubility properties in organic solvents. Hence, urgent need is observed by research for
innovative approaches such as transfer learning and hybrid modelling. While substantial
datasets exist for solvation-free energies derived from vapour-liquid equilibria and activity
correlations, this data is not extensively applicable to pharmaceutical contexts. Hence,
research objectives now focus on the development of a robust model that leverages data
from common solvent molecules to enhance pharmaceutical applications.

Researchers have here adopted transfer learning strategies, combining large,
lower-accuracy quantum chemistry datasets with smaller, higher-accuracy experimental
measurement datasets. Initially, the neural network is trained on data derived from
quantum chemistry, and is then fine-tuned using experimental data to significantly improve
predictive accuracy, particularly for solvation-free energies.

For solid solubility prediction, where quantum chemistry methods fall short, hybrid models
have been established that combine machine learning with established thermodynamic
principles to accurately predict the solid solubility. A striking application of these predictive
models is in the automated design of dyes with tailored properties. Utilizing a robotic
laboratory platform, researchers have employed Al to autonomously generate novel dye
structures with enhanced attributes. This system integrated property prediction models to
assess candidate molecules, devise synthesis pathways, and conduct synthesis and
experimental validation. Over multiple iterations, the platform successfully developed dyes
with improved features, such as enhanced absorption and optimized water partitioning.

These machine-learning driven property prediction models have become indispensable tools
in modern molecular design, enabling researchers to navigate vast chemical spaces with
superior efficiency. Without such predictive capabilities, many newly generated molecular
structures would lack practical value. Ultimately, such trends underscore the essential role
of Al in the acceleration of discovery and general innovation in the field.
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@ DEEP-LEARNING METHODS FOR THE IMAGE-BASED ASSESSMENT OF
THE PHYSICAL STABILITY OF FORMULATED LIQUIDS OF INDUSTRIAL
INTEREST

Formulated liquids of industrial significance are complex, consisting of intricate mixtures of
numerous components, including water, surfactants, perfumes, thickeners, dyes, and,
crucially, stabilizers, which represent the focus of current research, as ensuring the stability
of these products is essential for product performance and acceptance. The four principal
types of instability typically encountered here include phase separation, where immiscible
phases separate, producing distinct layers; creaming, where less dense phases rise upward
under gravitational pressure; cracking, which manifests as visible fissures within the product;
and flocculation, the aggregation of dispersed particles into clumps or flocs.

Despite the critical nature of stability assessment, no universal method exists for assessing
the stability of such industrial liquids. Conventional approaches include nuclear magnetic
resonance microscopy, automated turbidity measurements, and optical techniques.
However, these methods face several limitations, including high equipment costs and the
need for specialized personnel, complex protocols that demand operator expertise, and
time-consuming processes which often require manual monitoring over lengthy periods of up
to 24 weeks.

While visual observation offers a simpler and more cost-effective alternative, it still depends
heavily upon repeated checks by human operators. To address this challenge, innovative
solutions such as time-lapse photography and video analysis have emerged, allowing
researchers to capture images over time under controlled conditions and to crop them into
targeted segments for analysis.

Nevertheless, two major hurdles remain: the training of analysts to accurately interpret
these images and develop robust instability detection methods, and the complexity inherent
in the detection of instabilities. In response to these challenges, Procter & Gamble (P&G)
have approached laboratories with requests to enhance their equipment’s performance in
these two areas. In response, laboratories proposed the development of a deep-learning-
based solution to execute necessary operations, leveraging convolutional neural networks
renowned for their effectiveness in image analysis due to their ability to recognize spatial
relationships within images. Convolutional neural networks are already transforming fields
such as medicine, where they are seeing increased usage for both the detection and
prediction of various diseases, particularly through early diagnoses based on images
obtained from diagnostic equipment. These networks are applied for object detection within
images, including identifying bubbles or droplets in multi-phase systems or detecting
defects. The issue at hand can now be viewed as a defect-detection challenge, where
instabilities manifest as defects in images of formulated liquid samples.

Here, primary research goals have included the development of o labelled dataset to
establish image ground-truth using data from the P&G Research Centre, the selection of an
appropriate deep learning architecture, and the ultimate development of an automated
instability detector capable of timely identification, which would bear significant industrial
relevance.

At the P&G Brussels Innovation Centre, over 6 OO0 time series of visual observations of
fabric softeners were collected. Each time series was segmented into frames, from which a
subset of 10 frames, referred to as a mosaic, was extracted and labelled by seasoned
industrial experts. These experts categorized each frame as either stable or unstable, with
the option to mark the specific types of instability present within the images and to select
multiple instabilities where applicable. The dataset comprised 53000 Iabels across
45000 images, with certain mosaics being evaluated by multiple experts for labelling.
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A major challenge here emerged from the imbalanced nature of the dataset: only 10% of
images exhibited instability, while 73% demonstrated stable behaviour and 17% contained
errors such as misaligned crops or empty frames due to the removal of vials absent
notification. Such imbalances represent a common challenge in industrial machine learning
applications, and to address this, research has evaluated multiple approaches, including
training CNNs from scratch, utilising local binary patterns and scaling binary descriptors,
random forest methodologies, applying transfer learning, and using geometric and colour
augmentations to improve generalization, with confusion matrices here representing critical
analytical tools. Ultimately, researchers established an ensemble model comprising eight
individual models through a widely used strategy to enhance performance by combining the
predictions of multiple networks. This model has, to date, yielded promising results.

To ensure the interpretability of the system, research here utilized gradient class activation
mapping, which leverages the final layer prior to flattening in order to generate a heat map
that highlights areas of stability within the image. This tool proved invaluable for explaining
model decisions, particularly when addressing stakeholder scepticism.

Another notable research challenge in this area was the sheer volume of labelling material
required, with thousands of images per time-lapse video requiring labelling. To mitigate this
challenge, researchers utilized a mosaic approach, employing ten-frame time-lapse videos
to train the detector and to subsequently analyse new samples within the context of the full
time-lapse video history. Nevertheless, ongoing efforts in labelling and continuous model
improvement remain essential, as the quality of outcomes is directly tied to the quality of
underlying data.

The resulting automated detection system significantly improves the identification of
instability in formulated liquids. As part of this effort, researchers have created a more
refined and high-quality dataset, humorously named the "Fluid" dataset, for weight and
liquid instability, which is now freely accessible on GitHub and offers a valuable resource for
the broader research community.

(O DISCUSSION

The issue of solubility remains a challenging and multifaceted topic, often resisting
straightforward characterization. While current research has explored solubility from a
thermodynamic perspective, alternative methods also exist. Notably, several machine
learning studies have approached solubility prediction using predefined molecular
descriptors, such as high-energy running capabilities, polarizability, and polarity. Current
research, however, aims to enable neural networks to autonomously identify relevant
features, freeing interpretation from user assumptions, although drawbacks here include
the necessity of significantly large datasets. To this end, researchers have integrated hybrid
modelling and thermodynamics, among other approaches, to ensure sufficient data
availability.

The prediction of solubility across various crystal structures and their diffusivity represents a
promising direction for future research. While recent advances in quantum chemistry
calculations and methodological improvements are progressively enabling the estimation of
enthalpies for various polymorphs and crystalline forms, data availability remains the chief
limiting factor. Expanding high-quality datasets will hence be critical for advancing
predictive models in this field.

The application of transfer learning in solubility prediction currently lacks an established
baseline framework universally adopted across the field, and the development of such a
baseline is context-dependent. In thermodynamics and liquid phase property prediction,
multitask models that simultaneously predict multiple related properties have demonstrated
particular promise. Incorporating predictions of correlated properties can enhance the
accuracy of specific property predictions while supporting the development of generalizable
pre-trained models. Hence, as standardisation and collaboration increases, the
establishment of shared baselines is anticipated to become increasingly feasible. 15



ROUND TABLE

Q CAN Al ASSIST IN THE CREATIVE WORK PROCESS?

Al is increasingly being recognised as a positive transformative force across industries,
including in energy and chemical engineering. While academic research has achieved
remarkable advancements in Al capabilities, the industrial sector is still in the early stages
of exploring its full potential. Within engineering firms, particularly those working in oil, gas,
and energy transmission, large-scale projects progress from process design to construction
stages which often involve billion-dollar investments. Despite the repetitive and structured
nature of workflows involved, which include process simulations, PFD development, and the
creation of P&IDs, the level of automation in these tasks currently remains of limited nature.
One of the most creative and challenging aspects of industrial workflows is the generation
of PFDs. The future research vision is to develop systems that, upon receiving client input,
can automatically generate flow schemes, link these with simulations, and integrate them
with data sheets to support PFD development. Such systems would align simulation outputs
with design documents, streamlining the early stages of project development. While these
capabilities are currently technically feasible, the practical solutions currently available in
the industry lag behind the advanced approaches explored in academic research.

With respect to Al's potential to support process synthesis and design within the chemical
and process industries, among the tools currently available is a process synthesis software
package that consolidates over two centuries of industrial knowledge, primarily sourced
from the German process sectors. Access to this is available upon request, and one such
example is provided by the Process Design Centre in Breda, Netherlands, which offers
specialized support upon request.

Despite the promise of Al tools such as language models in generating process flow
diagrams for chemical synthesis, practical limitations remain burdensome. Al output is often
inaccurate, and this observation reflects a broader trend observed in industrial settings,
where researchers begin by leveraging best practices, literature, and existing resources to
conduct initial experiments, while the transition from laboratory to industrial scale demands
more nuanced and innovative approaches.

Engineers play a critical role in evaluating laboratory results, especially when the potential
exists to recover raw materials effectively. At this stage, focus shifts to designing viable
production processes. Unlike simple scale-up, industrial translation requires a rethinking of
unit operations, often diverging significantly in nature from lab procedures. Here, creativity
and experience become vital, with decisions to be made regarding which unit operations to
employ and how these shall be executed. Al may here contribute valuable insights, although
a degree of healthy scepticism remains warranted while the field remains in its early
evolutionary stages.

One of the key challenges in scaling up involves the identification and monitoring of KPlIs
across distinct production scales. This process also necessitates accurate sizing and the
understanding that scaling often entails technological transformation, as techniques that
function efficiently at laboratory scale may not translate directly to larger systems. Al may
here serve as a valuable support tool by aiding in the identification of discrepancies as well
as in the proposal of adaptations.

Nevertheless, the application of Al should be framed as an initial step in the broader
creative process. While Al tools may suggest technically feasible plant configurations,
real-world implementation requires careful consideration of operational realities, including
cleaning intervals, lifecycle considerations, and maintenance requirements. It is for
experienced human engineers to understand such factors and to integrate these into the
equipment selection criteria, while penalizing designs that fall short and fail to meet
practical standards.
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(© SHOULD Al BE INTEGRATED INTO CHEMICAL ENGINEERING CURRICULA?

As the role of Al expands within industrial sectors, a fundamental question arises: should Al
and data science be integrated into the core curriculum of chemical engineering programs?
Consensus among academic and industrial stakeholders points to an urgent need to
modernize education to better align with contemporary digital demands. Experts
acknowledge that their academic training previously lacked data science components, and
bridging the gap between industry and academia is increasingly viewed as a critical
endeavour in the field. With Al observing growing relevancy in the sector, as well as the
skills required to leverage artificial intelligence in addressing upcoming challenges, future
engineers must be prepared to engage with these technologies effectively.

To achieve this aim, educators emphasize the need to provide students with sufficient
foundational knowledge to meaningfully utilize Al tools. For instance, the chemical
engineering scale-up process involves a transition from laboratory experiments to full-scale
industrial production, which often spans five to 10 years, with almost 50% of such
transitions ending in failure. Al holds the potential to significantly reduce time-to-market and
increase the probability of success, with 90% success metrics representing an ideal
minimum, although engineers will have to be sufficiently trained to fully exploit such
potentialities.

One proposed strategy here is the inclusion of collaborative, company-involved projects to
engage students with real-world applications of machine learning and Python applications in
chemical engineering contexts. Emphasizing practical experiences here enhances not only
technical competencies but also fosters industry-relevant problem-solving skills.

A common thread in industry feedback is the importance of understanding how industrial
machinery functions and how issues scale, as scaling up processes could represent one
means of enhancing success rates while reducing lead times. For example, the disposal of
insoluble residues may seem trivial at laboratory scale but can become critical in full-scale
production, hence the need for laboratory approaches that simulate the complexities of
real-world, large-scale operations.

Experts also recognize that current graduates often lack adequate education in data
engineering. In sectors such as the pharmaceutical industry, digitization is advancing
rapidly, with dedicated roles emerging focused on data quality and terminology
standardization. Misinterpretations of terms, such as the dual meanings of “API" in
computer science and pharmaceutical contexts, can undermine data integrity when
interfacing with, for instance, SCADA systems. Educational programs must therefore teach
not only programming and computer science, but also the standards and vocabularies
necessary for effective data collection and management.

The shift from traditional languages such as MATLAB toward Python reflects broader
industry trends, with Python now representing the language of standard within data
analytics. Its inclusion in chemical engineering education is hence of paramount importance.
However, data science should not be confined to a stand-alone subject. Instead, it should be
integrated into the chemical engineering curriculum as a generalizable toolset, comparable
to the case in the introduction of computers in engineering decades ago.

Of equal importance is the need for real data. While simulated data may serve as an entry
point for training purposes, authentic industrial data is indefensible for producing valuable
industry outcomes. Challenges persist in accessing high-quality data, however, and it is here
of imperative nature that gaps be bridged with respect to data democratization.

Such considerations are particularly important with respect to SQL relational databases
and MES platforms, which are often more complex than Pythonesque scripting
environments, and commonly present a difficult challenge to engineers. This issue is
becoming increasingly critical with the rise of cloud-based systems, rendering those in the
field with knowledge of SOQL at great advantage over their traditionally educated

counterparts.
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Regardless, not all engineers will need to become highly proficient in writing computer code.
Instead, focus should lie on cultivating a general understanding of how Al tools work and
how to apply various methodologies appropriately. Tools such as Copilot, GitHub, and
ChatGPT may be able to execute code, but it is crucial that users know how to structure
inquiries and interpret outputs effectively.

Elective courses in machine learning are already becoming more common in chemical
engineering Master’s programmes. However, uptake among students remains less than is
necessary. To address this, educators suggest positioning machine learning not as a niche
skill but as across-disciplinary enabler. To this end, resources such as the "Machine Learning
for Chemical Engineers" GitHub repository offer promising entry points for students.

In addition to teaching Al use, academic institutions are urged to collaborate in developing
open educational resources that keep pace with the rapid evolution of the field, in order to
assist students in understanding the rationale behind Al's selection of specific models.

From a statistical standpoint, particularly where pre-treatment data is concerned, experts
strongly suggest incorporating Al tools, with leading process simulators such as Aspen now
offering Al-enhanced features, including hybrid modelling techniques. Experts suggest that
these should be incorporated into academic simulation training to keep pace with
contextual Al progression. Some universities have already begun such implementation, with
Nancy offering numerous elective courses in machine learning and related fields, and
establishing committees to evaluate where Al efforts require further acceleration.

A broader pedagogical question also arises in this respect: should chemical engineers also
be trained as data analysts, or should they simply be taught the language necessary to
collaborate with data professionals? Consideration should here be given to the potential risk
that students may struggle to find employment if their education leans too heavily on data
science absent solid chemical engineering foundations.

Successful integration depends on multidisciplinary collaboration. While building advanced
tools often requires dedicated machine learning or data engineers, chemical engineers
bring irreplaceable domain knowledge to the table, particularly regarding the physical and
chemical constraints of real-world processes.

In practise, researchers are increasingly engaged in the transition from proof-of-concept to
the implementation of web application-based Al and mechanistic model-driven
methodologies for process engineering, with companies increasingly expressing interest in
generalist engineers who feature hybrid expertise in both chemical process engineering and
data engineering, as well as in data analytics. As projects move toward production, the
scale and complexity of data increases, requiring engineers to assume roles similar to those
of product owners, in which they define objectives, identify user needs, and align technical
outcomes with business goals. This trend underscores the crucial nature of comprehensive
understanding on the part of graduates.

Ultimately, while education must prepare engineers to enter the workforce, it cannot
adequately cover every possible future scenario. Lifelong learning is inevitable, and industry
will certainly need to play a central role in supporting continuous development through
on-the-job training programs. With the proliferation of tools and platforms available,
educators are encouraged to harness these resources to offer more dynamic and adaptive
learning environments.
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@ HOW CAN Al TECHNOLOGY WORK HAND-IN-HAND WITH HUMANS?

While Al continues to influence the landscape of publications concerning the advancements
and future applications of machine learning tools in chemical engineering, existing literature
is observed to lack a standardized approach. Frequently, data is accessible only upon
request, or is in some instances entirely lacking, with corresponding code often being
unavailable. A central question hence emerges: is it possible to establish a generalized
standard procedure for drafting literature publications?

Although data on chemical reactions exists, it is not often structured in a way that supports
Al applications, despite the time-intensive efforts spent generating it in laboratories. To
avoid these datasets being locked behind corporate or proprietary interests, an open call
has been announced to publish data in open-access databases. Furthermore, these open
resources would enable standardized models to be benchmarked against validated
datasets, rather than having engineers rely on questionable patent literature. Even when
data is available upon request, journal policies may limit how this can be used.

For experimentalists, the public accessibility of data presents challenges. Frequently, when
graduate students collect data, raw outputs from the analytical instruments are not
immediately usable. Interpretation is what imbues data with its value. For example, although
chromatograms can be shared, without contextual information on how they were obtained,
they can easily be misinterpreted. Some researchers have adhered to open-access
mandates by including all data directly in their papers, even if statements indicate
availability upon request. Tools such as Origin can also allow data extraction from figures,
but again, interpretation remains key.

In some academic settings, efforts are being made to define standardized vocabularies and
guidelines for publication, particularly within newly launched PhD programs. These
guidelines specify which data types should be included, either in primary texts or as
supplementary material. Such an approach could facilitate the use of this data across
laboratories and enhance the reproducibility of experiments. The question necessarily
arises, therefore, as to whether a similar methodology could be applied to artificial
intelligence and machine learning experiments.

There already exists a set of standards for various measurement types, along with
recommended systems, such as those involving the testing of liquid extraction equipment.
Experts suggest that it may be advantageous to explicitly publish these standards and to
make them more visible and accessible. This need not be confined to scientific papers, and
could perhaps be achieved through dedicated organizations, such as the EFCE, which could
identify and promote specific methodologies.

As Al becomes more prevalent in laboratory settings, researchers observe the need to
increase its user-friendliness. Many lab personnel are experts in their respective fields but
avoid Python or command-line tools in favour of more familiar workflows. By embedding
Python scripts into custom software, laboratories can develop internal tools with simple user
interfaces that still leverage powerful Al capabilities. For instance, tools now exist with
web-based interfaces that allow users to input molecular structures and receive solubility
data, aimed specifically at experimentalists rather than Al specialists.

Just as users receive training before handling complex lab instruments such as NMR
machines, experts recommend that similar training programs should be mandatory for those
using Al tools, and including such tools and training as a requirement for publishing
research could help ensure broader usage beyond the Al community.

Prior to the emergence of GenAl, emphasis focused primarily on explainability. Historically,
many individuals expressed concerns regarding the functionality of these systems, often
referring to them as "black boxes." Today, while such terms as "interpretability" and
"explainability" are mentioned less frequently, the issue of trust in Al models remains just as
relevant. To build trust, explainability should be embedded across the entire process, from
data collection to machine learning model implementation. 19



There is also a need to incorporate the social dimension into study curricula. Chemical
engineers interact with operators and technicians on the floor, and the success of the digital
transformation depends on human factors. If end-users do not trust or understand the tools,
even technically robust solutions may fail. Empowering users by giving them tools they can
control and understand increases efficient engagement and reduces the risk of failures due
to a lack of belief in the system. The social implications of such projects, particularly in
change management, are significant: relevant terminology here does not represent an
assemblage of mere buzzwords. That said, GenAl has already improved accessibility,
allowing users to interact with systems via natural language or visual results, and these
abilities have greatly enhanced user acceptance.

Nonetheless, data confidentiality remains a major barrier. For instance, in reactors using
sensitive catalysts, data sharing may not be possible without exposing intellectual property.
This raises the question: how can greater volumes of data be procured, and how can Al
tools be applied in settings featuring only limited data? Here, techniques such IPN modelling
and other Al methods capable of functioning with sparse datasets represent potential
solutions and are gaining traction, as researchers are increasingly assuming that significant
data quantities may not always be available in industrial scenarios.

Explainability is especially critical in these contexts. Heat maps generated from the final
layers of neural networks can help identify areas of importance and illustrate where
significant effects occur, which enhances understanding and credibility. However, Al models
and algorithms often identify patterns across multiple variables that may not be discernible
in traditional 2D representations. These insights are still valuable, but may not always be
easily explainable.

In process data analysis, the importance of explainability cannot be overstated. Many
engineers in this field still prefer traditional tools such as Excel. For instance, an online
monitoring platform named “Connection”, that includes low-code Principal Component
Analysis (PCA) features, allows technical service engineers to input multiple variables and
examine correlations. However, while these engineers can effectively use the tool, many
struggle to explain its inner workings, such as the relevance of results on cumulative
explained variance. Here, the main challenge to be addressed concerns how to effectively
communicate data science concepts within the framework of low-code toolsets that
engineers can readily use.

It would therefore be beneficial to establish a minimum knowledge baseline across the
industry. A framework similar to Lean Six Sigma could help standardize the role of data
science in the sector, with such standardization currently lacking. Regarding data sharing,
despite technical potential, many organizations exhibit excessive caution regarding the
dissemination of their data. Often, around 70% of data retained fails to generate revenue,
and is hence being held without purpose. The obstacle here is not technical but political: any
attempt to share data requires managerial approval, with managers typically declining such
requests. This is also true of incident reporting, where similar permission must be sought.
Regarding explainability, it is of crucial importance to address the issue of causality.
Machine learning models have been developed that perform competently, yet they fail to
adhere to causal principles, resulting in trends that lack physical validity and are thus
rendered ineffective in practice. Al, therefore, can not be relied upon while it focuses on
correlations rather than causations, yet this shortfall could be addressed by incorporating
causality through causal models such as differential equations.

In many instances, a clear business case can be successful in convincing stakeholders and
leadership of the benefits of data sharing and Al adoption. While reluctance may justifiably
exist today, the long-term rewards of cooperation, to be seen five to ten years down the
line, will become apparent as the community advances and Al models improve.
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Academic-industry partnerships also play a crucial role here. Projects are increasingly being
designed in which companies collaborate with research institutions on work that extends
beyond private corporate interest, not necessarily disclosing their core issues directly, but
offering proxy issues that can still lead to real solutions. Such approaches allow for innovation
without requiring any exposure of sensitive data. In a similar vein, experts believe that there exist
numerous opportunities for such innovative collaboration initiatives between industry and
academia, through which companies could provide alternative datasets or specify the type of
data they wish to collect, thereby facilitating meaningful research and development, again
without exposing any sensitive data.

This collaborative model is already prevalent in Al-driven chemistry. In the broader field of Al
research, establishing benchmarks is essential for the conducting of fair comparisons, and if
companies were to collaborate through the sharing of even select flow-sheets or datasets,
whether public, patented, or otherwise, training sets could be established that would serve as
reliable reference points, allowing multiple parties to develop derivative models. When
companies withhold data exclusively for internal use, issues arise concerning limitations on
potential academic research in relevant areas. If academia is excluded from such discussions,
future innovation in the field may be hindered. Conversely, such a challenge could also foster
innovative ideas and creative solutions from diverse perspectives and disciplines.
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